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ABSTRACT

In this paper we propose two fast Total Variation (TV) based algo-
rithms for image restoration by utilizing variational posterior distri-
bution approximation. The unknown image and the hyperparameters
for the image and observation models are formulated and estimated
simultaneously within a hierachical Bayesian framework, rendering
the algorithms fully-automated without any free parameters. Ex-
perimental results demonstrate that the proposed algorithms provide
restoration results competitive to existing methods in terms of image
quality while achieving superior computational efficiency.

Index Terms— Bayesian methods, image restoration, total vari-
ation, variational methods, parameter estimation.

1. INTRODUCTION

The image degradation process is often represented by a linear model
as

y = Hx + n, (1)

where x, y, and n represent the original image, the observed image,
and the noise, respectively, all ordered lexicographically. The matrix
H represents the blurring matrix, which is assumed to be known.
It is also assumed that n is sampled from a zero-mean independent
Gaussian random process with variance β−1.

The image restoration problem is to find an estimate of x from
y and H using prior knowledge about n and x. The literature on
image restoration is rich (a review and classification of the major
approaches can be found for example in [1]).

In this paper we adopt the Bayesian formulation of the restora-
tion problem (see, for example, [2, 3, 4]) to jointly estimate the im-
age and the parameters using a TV image prior. In order to do so
we introduce a hidden unknown image u which is assumed to be
obtained from a TV prior and whose contribution is to produce a fi-
nal restoration which is close, in the Gaussian sense, to x. This idea
was first presented in [5] as a way to perform a fast TV based image
restoration from a regularization point of view, We explore here the
same model but from the Bayesian point of view, which allows the
estimation of all the parameters involved in the model and achieve
the same computational efficiency as the method proposed in [5].

This paper is organized as follows. In Section 2 we present the
hierarchical Bayesian model. Section 3 describes the variational in-
ference methods and the derivation of the proposed methods. We
present the experimental results in Section 4 and conclude in Sec-
tion 5.

2. BAYESIAN MODELING

In this work, we utilize an hierarchical Bayesian model which con-
sists of two stages: First, the image and the observation noise are
modeled using a hidden unknown image and unknown hyperparam-
eters; and second, a prior model on the unknown image and hyper-
prior distributions on the hyperparameters are introduced.

2.1. Prior and observation models

Given the observation model in Eq. (1), the corresponding probabil-
ity distribution can be stated as

p(y|x, β) ∝ βN/2 exp

[
−β

2
‖ y − Hx ‖2

]
. (2)

Instead of using a TV prior directly as the image model, we
assume that the original image is a noisy Gaussian realization of
another image u, that is,

p(x|u, α) ∝ αN/2 exp
[
−α

2
‖ x − u ‖2

]
, (3)

The properties of the image u will be described later. Then, the
image u is modeled as a realization of a TV prior distribution, that
is,

p(u|γ) ∝ 1

ZTV(γ)
exp [−γTV(u)] , (4)

where ZTV(γ) is the partition function and

TV(u) =
∑

i

√
(Δh

i (u))2 + (Δv
i (u))2, (5)

where the operators Δh
i (u) and Δv

i (u) correspond to, respectively,
horizontal and vertical first order differences, at pixel i, that is, Δh

i (u) =
ui − ul(i) and Δv

i (u) = ui − ua(i), where l(i) and a(i) denote the
nearest neighbors of i, to the left and above, respectively. We can
approximate the partition function ZTV(γ) using∫

u

∫
v

exp
[
−γ

√
u2 + v2

]
dudv = 2π/γ2, (6)

as proposed in [6], to obtain

p(u|γ) ∝ γN/2 exp [−γTV(u)] , (7)

where N is the size of the original image x and the hidden image u.
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2.2. Hyperprior on the hyperparameters

In this work we use flat improper hyperpriors on γ, α and β, that is,
we utilize

p(γ) ∝ const, p(α) ∝ const, p(β) ∝ const. (8)

Note that with this choice of the hyperpriors the observation y is
fully responsible for the estimation of the image and hyperparame-
ters.

The joint distribution of all unknowns can finally be found by
combining Eqs. (2), (3), (4) and (8) as

p(γ, α, β,u,x,y) = p(γ)p(α)p(β)p(u|γ)p(x|u, α)p(y|x, β)

∝ γN/2αN/2βN/2 exp [−γTV(u)]

× exp
[
−α

2
‖ x − u ‖2

]
exp

[
−β

2
‖ y − Hx ‖2

]
. (9)

3. BAYESIAN INFERENCE AND VARIATIONAL
APPROXIMATION

The Bayesian paradigm dictates that inference on (γ, α, β,u,x) should
be based on the posterior distribution

p(γ, α, β,u,x | y) =
p(γ, α, β,u,x,y)

p(y)
, (10)

which is intractable. Therefore, we resort to variational methods to
approximate it by a tractable distribution of the form q(γ, α, β,u,x) =
q(γ, α, β)q(u)q(x). The variational criterion used to find q(γ, α, β,u,x)
is the minimization of the Kullback-Leibler divergence [7], given by

CKL(q(γ, α, β,u,x) ‖ p(γ, α, β,u,x|y))

=

∫
q(γ, α, β,u,x) log

(
q(γ, α, β,u,x)

p(γ, α, β,u,x|y)

)
dγdαdβdudx

=

∫
q(γ, α, β,u,x) log

(
q(γ, α, β,u,x)

p(γ, α, β,u,x,y)

)
dγdαdβdudx

+ const,

(11)

which is always non negative and equal to zero only when the distri-
butions q(γ, α, β,u,x) and p(γ, α, β,u,x|y) coincide.

We now examine two approximations of the posterior distribu-
tion.

3.1. Approximation by degenerate distributions

We first assume that the distributions q(γ, α, β), q(u) and q(x) are
degenerate distributions, that is, they take one value with probabil-
ity one and the rest of the values with probability zero. Using this
assumption, the following procedure is obtained to estimate γ, α, β,
u, x.

Algorithm 1 Given initial estimates γ1, α1, β1 of the hyperparam-
eters and the initial estimate u1 of the hidden image,
For k = 1, 2, . . . until a stopping criterion is met:

1. Find

xk = arg min
x

αk

2
‖ x − uk ‖2 +

βk

2
‖ y − Hx ‖2

(12)

2. Find

uk+1 = arg min
u

γkTV(u) +
αk

2
‖ xk − u ‖2

(13)

3. Find

γk+1 =
N/2

TV(uk+1)
(14)

αk+1 =
N

‖ uk+1 − xk ‖2
(15)

βk+1 =
N

‖ y − Hxk ‖2
(16)

It is very interesting to note that, without the estimation of the
hyperparameters, the procedure to estimate the original as well as
the sparse hidden variable coincides with the model proposed in [5].
Consequently, the proposed Bayesian algorithm represents a formu-
lation of the method proposed in [5] which also allows the estimation
of the involved parameters. Notice also that procedure based on the
method in [8] to find the restoration proposed in [5] can also be used
here to find the solution of Eqs. (12) and (13). As demonstrated in
Section 4, this procedure significantly improves the computational
speed of the algorithm in combination with the priors in Eqs. (3) and
(4).

3.2. Approximation by non-degenerate distributions

Let us now examine the case where the distributions q(γ, α, β), q(u)
and q(x) are not constrained to be degenerate. Due to the form of
the TV prior, it is difficult to evaluate the integral in Eq. (11). We
therefore utilize a minorization of the TV prior. Let us define, for
γ, u and a N−dimensional vector v ∈ (R+)N , with components
vi, i = 1, . . . , N , the following functional

M(γ,u,v) = γN/2 exp

[
−γ

2

∑
i

(Δh
i (u))2 + (Δv

i (u))2 + vi√
vi

]

(17)
Next consider the following inequality [6], which states that for

two real numbers z ≥ 0 and v > 0

√
z ≤ √

v +
1

2
√

v
(z − v). (18)

Utilizing this inequality in Eq. (17), it is clear that M(γ,u,v) is a
lower bound of the prior p(u|γ), that is,

p(u|γ) ≥ const · M(γ,u,v), (19)

which leads to the following lower bound of the joint probability
distribution

p(γ, α, β,u,x,y) ≥ p(γ)p(α)p(β)M(u,v)p(x|u, α)p(y|x, β)

= F(γ, α, β,u,x,v,y). (20)

Utilizing this lower bound, we obtain

∫
q(γ, α, β,u,x) log

(
q(γ, α, β,u,x)

p(γ, α, β,u,x|y)

)
dγdαdβdudx

≤
∫

q(γ, α, β,u,x) log

(
q(γ, α, β,u,x)

F(γ, α, β,u,x,v,y)

)
dγdαdβdudx

+ const (21)

which presents an upper bound of the KL distance in Eq. (11). This
upper bound is easier to evaluate than the actual KL distance. There-
fore, F(γ, α, β,u,x,v,y) can be used as the majorizing functional
of the joint distribution in Eq. (9). Proceeding in this fashion, we
obtain the the following algorithm for evaluating the approximating
posteriors q(u), q(x) and q(γ, α, β).
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Algorithm 2 Given q1(γ, α, β), an initial estimate of the distribu-
tion q(γ, α, β), and q1(u), an initial estimate of q(u) and v1 ∈
(R+)N ,
For k = 1, 2, . . . until a stopping criterion is met:

1. Find

qk(x) = arg min
q(x)

∫
qk(γ, α, β)qk(u)q(x)

× log

(
qk(γ, α, β)qk(u)q(x)

F(γ, α, β,u,x,vk,y)

)
dγdαdβdudx (22)

2. Find

qk+1(u) = arg min
q(u)

∫
qk(γ, α, β)q(u)qk(x)

× log

(
qk(γ, α, β)q(u)qk(x)

F(γ, α, β,u,x,vk,y)

)
dγdαdβdudx (23)

3. Find

vk+1 = arg min
v

∫
qk(γ, α, β)qk+1(u)qk(x)

× log

(
qk(γ, α, β)qk+1(u)qk(x)

F(γ, α, β,u,x,v,y)

)
dγdαdβdudx (24)

4. Find

qk+1(γ, α, β) = arg min
q(α,β)

∫
q

q(γ, α, β)qk+1(u)qk(x)

× log

(
q(γ, α, β)qk+1(u)qk(x)

F(γ, α, β,u,x,vk+1,y)

)
dγdαdβdudx (25)

Set

q(γ, α, β) = lim
k→∞

qk(γ, α, β), q(u) = lim
k→∞

qk(u), q(x) = lim
k→∞

qk(x).

(26)

Let us now explicitly state the forms of the distributions found at
each step of the algorithm. We denote by Eq(·) the expectation with
respect to the distribution q(·). In order to find q(x), we differentiate
the integral on the right-hand side of Eq. (22) with respect to q(x)
and set it equal to zero to obtain

q
k(x) ∝ exp Eqk(γ,α,β)qk(u)[ln F(γ, α, β,x,u,vk)]. (27)

Therefore, qk(x) is an N -dimensional Gaussian distribution with
parameters

covqk(x)[x] =
(
Eqk(β)[β]HtH + Eqk(α)[α]I

)−1
, (28)

Eqk(x)[x] = covqk(x)[x]
(
Eqk(α)[α]Eqk(u)[u] + Eqk(β)[β]Hty

)
.

(29)
Similarly, q(u) is found by differentiating the integral on the

right-hand side of Eq. (23) with respect to q(u) and by setting it
equal to zero, which results in

q
k+1(u) ∝ expEqk(γ,α,β)qk(x)[ln F(γ, α, β,x,u,vk)]. (30)

Therefore qk+1(u) is an N -dimensional Gaussian distribution with
parameters

covqk+1(u)[u] =
(
Eqk(α)[α]I + Eqk(γ)[γ](Δh)

t
W (vk)(Δh)

+ Eqk(γ)[γ](Δv)tW (vk)(Δv)
)−1

, (31)

Eqk+1(u)[u] = covqk+1(u)[u]Eqk(α)[α]Eqk(x)[x], (32)

where W (v) is the N × N diagonal matrix of the form

W (v) = diag

(
1√
vk

i

)
, i = 1, . . . , N (33)

Similarly, we have from Eq. (24)

vk+1
i = Eqk+1(u)[(Δ

h
i (u))2 + (Δv

i (u))2], i = 1, . . . , N. (34)

where

Eqk+1(u)[(Δ
h
i (u))2 + (Δv

i (u))2]

= (Δh
i (Eqk+1(u)[u]))2 + ((Δv

i (Eqk+1(u)[u]))2

+ Eqk+1(u)[(Δ
h
i (u − Eqk+1(u)[u]))2]

+ Eqk+1(u)[(Δ
v
i (u − Eqk+1(u)[u]))2] (35)

Finally we find qk+1(γ, α, β) by differentiating the integral on
the right hand side of Eq. (25) with respect to q(γ, α, β) and setting
it equal to zero, which results in

q
k+1(γ, α, β) = q

k+1(γ)q
k+1(α)q

k+1(β) (36)

where qk+1(γ), qk+1(α), and qk+1(β) are Gamma distributions,
given respectively by

q
k+1(γ) ∝ γN/2 exp

[
−γ

∑
i

√
vk+1

i

]
, (37)

q
k+1(α) ∝ αN/2 exp

[
−α

Eqk+1(u)qk(x) ‖ u − x ‖2

2

]
, (38)

q
k+1(β) ∝ βN/2 exp

[
−β

Eqk(x) ‖ y − Hx ‖2

2

]
. (39)

The means of these distributions are used as the estimates of the
hyperparameters.

Finally, we note here that this proposed restoration algorithm
represents an extension of the previous one (and so of the method
proposed in [5]) which takes into account the uncertainty of the es-
timated image and parameters. This incorporation of uncertainty is
performed through the utilization of the posterior covariances of the
unknowns. It should be pointed out that the method in [8] can again
be utilized to find the estimates given in Eqs. (29) and (32), and
therefore Algorithm 2 is also computationally very efficient as Al-
gorithm 1.

4. EXPERIMENTAL RESULTS
In this section we present experimental results obtained by the use
of the proposed algorithms. Performance of our algorithms will be
evaluated on two images (i.e. Lena and Cameraman) with two differ-
ent linear space invariant degradations, Gaussian blur with variance
9 and the uniform blur of size 9x9, respectively. In all cases, white
Gaussian noise was added to the blurred images to obtain degraded
images with blurred signal to noise (BSNR) ratios of 30 and 40dB.
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In order to compare different restorations we have used improve-
ment in signal to noise Ratio (ISNR) as our comparison metric. The
ISNR is defined as 10 log10

(‖x − y‖2/‖x − x̂‖2
)
, where x, y and

x̂ are the original, observed and estimated images, respectively. Ad-
ditionally, we report algorithm run times to evaluate computational
complexity of the proposed methods. Algorithms 1 and 2 are de-
noted ALG1 and ALG2, respectively. BMK1 and BMK2 repre-
sent first and second methods from [4], respectively. Note that both
BMK1 and BMK2 are image restoration methods also based on the
TV priors, whereas the computations are performed using the conju-
gate gradient method. For all experiments, ‖xk−xk−1‖/‖xk−1‖ <
2×10−4; (or Eqk(x)[x

k] instead of xk) is used as a termination cri-
teria. The comparison between the algorithms are presented in Table
1. It should be pointed out that the parameters of the proposed meth-
ods are estimated automatically as described in Section 3. However,
based on [5] and empirical data, we found that local minima can be
avoided by setting Eqk(α)[α] equal to the Eqk(γ)[γ], which is the
method utilized in the experiments reported here.

It is clear from Table 1 that the proposed methods ALG1 and
ALG2 provide restoration results competitive to BMK1 and BMK2
methods in terms of image quality, as indicated by the ISNR metric.
In the Gaussian blur case, the proposed methods provided results
similar to BMK1 and BMK2, whereas in the uniform blur case, they
resulted in slightly decreased ISNR values. On the other hand, it is
clear from Table 1 that the proposed methods are computationally
much more efficient than BMK1 and BMK2, converging 6-20 times
faster. The restoration results of the Cameraman image in the case
of the uniform blur of size 9x9 with 40dB BSNR, as well as the
degraded version, are shown in Figure 1. As can be seen from the
Figure 1, ALG1 and ALG2 provide restored images with very high
visual quality, and the difference as indicated by the ISNR values are
not significant.

In summary, the proposed methods ALG1 and ALG2 provide
ISNR results comparable with existing TV-based image restoration
methods such as BMK1 and BMK2, whereas they are computation-
ally much more efficient. Moreover, both methods show little or no
difference in the restored images in terms of visual quality.

Table 1. Performance of the proposed algorithms

Cameraman (9x9 uniform) Lena (Gaussian variance 9)

BSNR Method ISNR[dB] time[min] Method ISNR[dB] time[min]

40dB BMK1 7.93 13.31 BMK1 4.55 4.59

BMK2 8.08 14.64 BMK2 4.51 4.19

ALG1 6.81 0.55 ALG1 4.50 0.47

ALG2 6.58 0.79 ALG2 4.49 0.64

30dB BMK1 3.55 4.66 BMK1 3.55 3.44

BMK2 3.77 5.72 BMK2 3.54 3.78

ALG1 3.23 0.58 ALG1 3.49 0.52

ALG2 3.20 0.79 ALG2 3.48 0.70

5. CONCLUSIONS
In this paper we presented two Bayesian image restoration meth-
ods based on total variation image priors. The unknown image and
all algorithm parameters are modeled using a hierarchical Bayesian
framework and estimated simultaneously which results in fully au-
tomated methods. We utilized a two-stage image model where the
TV image prior is imposed on a hidden image. The utilization of
this image priors makes the use of computationally efficient meth-
ods possible. Experimental results demonstrate that the proposed

(a) (b)

(c) (d)

Fig. 1. (a) Image degraded by the uniform size 9x9 blur
(BSNR=40dB), (b) Restored image using BMK2 (ISNR=8.08dB),
(c) Restored image using ALG1 (ISNR=6.81dB), (d) Restored im-
age using ALG2 (ISNR=6.58dB).

algorithms provide restoration results competitive in image quality
and superior in computational efficiency.
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