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ABSTRACT

In this paper we propose a novel Bayesian algorithm for image
restoration and parameter estimation. We utilize an image prior
where Gaussian distributions are placed per pixel in the high-pass
filter outputs of the image. By following the hierarchical Bayesian
framework, we simultaneously estimate the unknown image and
hyperparameters for both the image prior and the image degradation
noise. We show that the proposed formulation is a special case of
the popular lp-norm based formulations with p = 0, and therefore
enforces sparsity to an high extent in the filtered image coefficients.
Moreover, the proposed formulation results in a convex optimiza-
tion problem, and therefore does not suffer from the robustness
issues common with non-convex image priors. Experimental results
demonstrate that the proposed algorithm provides superior perfor-
mance compared to state-of-the-art restoration algorithms although
no user-supervision is required.

Index Terms— Image restoration, parameter estimation, Bayesian
methods.

1. INTRODUCTION

This paper concerns with the image restoration problem where the
original scene is estimated from a blurred and noisy observation.
A standard formulation of the image degradation model is given in
matrix-vector form by

y = Hx+ n, (1)

where the vectors x, y, and n represent respectively the original
image, the available noisy and blurred image, and the noise with
independent elements of variance β−1, and H represents the known
blurring matrix. The images are assumed to be of size m × n = N
pixels, and they are lexicographically ordered into N × 1 vectors.
The restoration problem calls for finding an estimate of x given y,
H, and knowledge about n and possibly x [1].

Currently, the state-of-the-art methods in image restoration gen-
erally incorporate image priors with heavier tails than Gaussian
priors (see [2] for a recent comparison). This is in accordance with
the fact that when the natural images are filtered with high-pass
operators (such as derivative filters, or wavelets), the filter out-
puts exhibit non-Gaussian marginal statistics. Common approaches
along this line incorporate Laplace priors (equivalent to utiliz-
ing l1-norms) [3], TV-priors [4], mixture-of-Gaussian priors [5],
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and hyper-Laplacian distributions based on lp-quasinorms with
0 < p < 1 [2, 6]. The principle of modeling non-Gaussian image
statistics is also coupled with the principle of sparsity (or compress-
ibility) of filter coefficients, which is widely utilized in recent image
restoration/reconstruction and compressive sensing algorithms [7].

In this paper, we propose a framework for image restoration
that utilizes independent Gaussian priors on the filter output coef-
ficients of the image. Most of the methods utilizing non-Gaussian
priors result in non-convex optimization problems which are prone
to robustness issues. We demonstrate that the proposed image prior,
while convex, is very effective in modeling the underlying edge
structure of the image. Using this approach within a hierarchical
framework and incorporating a fully-Bayesian analysis, we de-
velop a fully-automated algorithm that outperforms state-of-the-art
restoration algorithms in terms of restoration performance.

2. BAYESIAN MODEL

In this work, we adopt a hierarchical Bayesian framework consisting
of two stages. In the first stage, we model the observed image y us-
ing the conditional distribution p(y|x, β), and the unknown image
using the prior p(x|A) with A = diag (αi) , i = 1, . . . , N . The
parameters β and αi of these distributions, also called hyperparam-
eters, are modeled in the second stage using hyperprior distributions
p(αi) and p(β).

For the observation model, we assume that the noise is zero-
mean white Gaussian noise with the variance β−1, such that with
(1), it is represented by

p(y|x, β) ∝ βN/2 exp

[
−β

2
‖ y −Hx ‖2

]
. (2)

As the image model we use the following prior

p(x|A) ∝ |
L∑

k=1

DT
k ADk|−1/2 exp

(
−1

2

L∑
k=1

xTDT
k ADkx

)
,

(3)

where Dk, k = 1, 2, . . . L are N×N high-pass filter matrices which
are used to impose smoothness constraints on the image estimate.
The matrix A is the diagonal covariance matrix. Note that this prior
is similar in spirit to the priors used in relevance vector machines [8].

As for the hyperpriors on the hyperparameters αi and β, we
choose the Gamma distributions as they are the conjugate priors for
the inverse variances of the Gaussian distributions in (2) and (3).
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Specifically, they are given by

p(αi) = Γ(αi|ao
α, b

o
α) =

(boα)
ao
α

Γ(ao
α)

αao
α−1 exp [−αib

o
α] , (4)

p(β) = Γ(β|ao
β , b

o
β) =

(boβ)
ao
β

Γ(ao
β)

βao
β−1 exp

[−βboβ
]
. (5)

Note that the parameters ao
α and boα are common for all hyperpa-

rameters αi. Case of particular interest is when ao
α = ao

β = 1 and
boα = boβ = 0, which corresponds to the uniform distributions for the
hyperpriors. In this case, no prior information is assumed about the
hyperparameters and the observation y is made solely responsible
for the restoration process.

Finally, using (2), (3), (4) and (5), the joint distribution p(y,x,A, β)
is defined as

p(y,x,A, β) = p(y|x, β) p(x|A) p(β)
N∏
i=1

p(αi). (6)

3. BAYESIAN INFERENCE

Using the joint distribution defined in (6), the Bayesian inference is
based on the posterior distribution obtained using the Bayes’ rule as
follows:

p(x,A, β|y) = p(y,x,A, β)

p(y)
. (7)

However, as in many applications, the posterior distribution cannot
be obtained in closed form, since p(y) =

∫
p(y,x,A, β)dxdAdβ

cannot be computed. Generally, one resorts to approximation meth-
ods such as the evidence approach, variational Bayesian methods,
or maximum a posteriori estimates. In this work we adopt the ev-
idence approach (also known as type-II maximum likelihood). We
first decompose the posterior as

p(x,A, β|y) = p(x|y,A, β)p(A, β|y) . (8)

The posterior distribution over the image is then given by

p(x|y,A, β) =
p(y|x, β)p(x|A)

p(y|A, β)
, (9)

which is found to be a multivariate Gaussian distribution N (x|μx,Σx)
with parameters

μx = Σ−1
x βHTy , (10)

Σ−1
x =

[
βHTH+

L∑
k=1

DT
k ADk

]
. (11)

The mean in (10) of this distribution is used as the estimate of the
image. Next we consider the decomposition in (8) again to estimate
the hyperparameters β and αi. In the evidence approach, the hy-
perparameter posterior p(A, β|y) in (8) is approximated by a delta-
function at its mode, that is, it is represented by a degenerate dis-
tribution. The distribution p(A, β|y) is proportional to the product
of priors p(A)p(β) and the evidence p(y|A, β). The evidence is
found by marginalizing out the image x, such that

p(A, β|y) ∝ p(A)p(β)p(y|A, β)

= p(A)p(β)

∫
p(y|x, β)p(x|A)dx

∝ p(A)p(β)N (y|0,C) , (12)

where

C = β−1I+H

[
L∑

k=1

DT
k ADk

]−1

HT . (13)

Using (12), we maximize the distribution p(A, β|y) to estimate
the hyperparameters β and αi. This is equivalent to maximizing its
logarithm, which is expressed as

L = log p(A, β|y)
= −1

2
log |C| − 1

2
yTC−1y + const

+
N∑
i=1

(ao
α − 1) logαi − boααi + (ao

β − 1) log β − boαβ. (14)

Using the Woodbury and determinant identities (see [8]), the first
two terms in (14) can be rewritten as

log |C| = − log |Σx| −N log β − log

∣∣∣∣∣
L∑

k=1

DT
k ADk

∣∣∣∣∣ , (15)

yTC−1y = β ‖ y −Hμx ‖2 +
L∑

k=1

(Dkμx)
T A (Dkμx) . (16)

Using these identities, the derivative of L with respect to A can be
found as

2
dL
dA

= Diag

⎛
⎝[

L∑
k=1

DT
k ADk

]−1 L∑
k=1

DT
k Dk

⎞
⎠−Diag

(
L∑

k=1

DT
k DkΣx

)

−
L∑

k=1

(Dkμx) (Dkμx)
T + 2Diag

(
(ao

α − 1)

αi
− boα

)
,

(17)

where Diag(·) is a diagonal matrix created with the diagonal ele-
ments of its argument. In order to solve for αi satisfying dL

dαi
= 0,

we utilize the approximation

[
L∑

k=1

DT
k ADk

]−1 L∑
k=1

DT
k Dk ≈ A−1 . (18)

The values of αi that maximize L can then be found as

αi =
1 + 2(ao

α − 1)

vi + 2boα
, (19)

where vi is given by

vi =
L∑

k=1

(Dkμx)
2
i +

L∑
k=1

(
DT

k DkΣx

)
ii
, (20)

where (·)ii denotes the ith diagonal element of the matrix. Similarly,
the value of β that maximizes L can be found as

β =
1 + 2(ao

β − 1)

‖ y −Hx ‖2 +trace (HTHΣx) + 2boβ
. (21)

It can easily be shown that update equations of forms very simi-
lar to (19) and (21) are obtained if a variational Bayesian analysis is
carried out.
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In summary, the restoration algorithm iterates between estimat-
ing the image using (10), and estimating the hyperparameters using
(19) and (21) until convergence. Note that the matrix Σx is of size
N ×N , which with many images is probihitively large to construct
explicitly. However, its explicit construction is not required since
(10) can be solved very efficiently using a conjugate gradient algo-
rithm. In (20) and (21), where its explicit construction is needed,
we approximate it as a diagonal matrix by taking the reciprocals of
the diagonal elements of Σ−1

x . Extensive experiments with small
images showed empirically that this approximation results in very
close estimates and has a minor effect in the estimation process.

We conclude this section by analyzing the sparsity enforcing
property of the proposed formulation. When the shape and scale pa-
rameters in (4) and (5) are set equal to zero, i.e., ao

α = ao
β = 1

and boα = boβ = 0, the hyperparameters αi are estimated using
αi = 1/vi (this also corresponds to the choice suggested in [8]).
In locations where the filter outputs are very small (for instance
in smooth regions), the values of vi are very small, and therefore
αi values are very high. This corresponds to increased smoothness
at this location due to the smoothness matrix

∑L
k=1

(
DT

k ADk

)
in

(11). On the other hand, in areas where the filter outputs are signifi-
cantly high, the smoothness is less enforced due to low αi values.

Let us now consider the lp-norm based image priors, which
correspond to the well-known iteratively reweighted least squares
(IRLS) formulations [6]. Assuming that the lp-norm is enforced on
the filter outputs as is done in this work, the hyperparameter matrix
is computed as [6]

Ap = diag
(
λv

p/2−1
i

)
, (22)

where λ is a parameter controlling the degree of smoothness, and vi
is defined in (20) (Note that [6] is a deterministic formulation so the
second term in (20) related to Σx is set equal to zero). Now, in the
limit p → 0 we obtain

lim
p→0

Ap = diag
(
λv−1

i

)
, (23)

which corresponds to a scaled version of (19). Therefore, the pro-
posed formulation corresponds to the IRLS formulation with lp-
norms when p → 0. Note, however, that as opposed to the IRLS
approach, the proposed formulation results in a convex optimization
problem, and therefore it is much more robust. Robustness is also an
issue with methods utilizing non-convex image priors such as mix-
ture of Gaussian priors [6].

4. EXPERIMENTAL RESULTS

In this section we present experimental results obtained by the use
of the proposed algorithm and compare its performance with sev-
eral state-of-the-art image restoration methods. Four algorithms are
chosen for comparison: 1) The method in [9], which is based on a
Gaussian image prior (denoted by Gaussian), 2) the method in [4]
based on TV-priors (denoted by TV), 3) the method in [10] based
on Student’s t priors (denoted by Student’s t), and 4) the method
in [6] based on lp-norm based image priors (denoted by IRLS). The
first three methods are fully-automated Bayesian methods, i.e., they
do not require parameter tuning. The results of all methods are re-
produced from [10] except the IRLS method, which we have imple-
mented and tuned its parameters to report its best performance. This
method is based on lp-norms where we set p = 0.8 as recommended
by [6].

Table 1. ISNR values for the Lena, Cameraman and Shepp-Logan
images degraded by a 9x9 uniform blur.

Lena Cameraman Shepp-Logan

BSNR Method ISNR (dB)

40dB Proposed 8.28 9.10 30.14
Gaussian 4.72 4.57 5.31

TV 8.42 8.57 13.69
Student’s t 8.49 9.17 17.12

IRLS 8.44 9.07 19.33

30dB Proposed 6.24 6.06 24.19
Gaussian 4.06 3.24 3.56

TV 5.89 5.41 7.77
Student’s t 5.89 5.88 9.42

IRLS 5.96 5.79 14.36

20dB Proposed 4.49 4.36 14.29
Gaussian 2.68 2.19 2.49

TV 3.72 2.42 3.01
Student’s t 3.70 3.04 5.90

IRLS 4.00 4.32 10.97

In the proposed algorithm, we utilized the first and second order
horizontal and vertical derivative filters for D1, . . . ,D4, that is,

[ −1 1
]
,

[ −1
1

]
,
[
1 −2 1

]
,

⎡
⎣ 1

−2
1

⎤
⎦ , (24)

and 45o and −45o derivative filters for D5 and D6, that is,[ −1 0
0 1

]
,

[
0 −1
1 0

]
(25)

More complex filters (such as curvelets and fan filters) will poten-
tially lead to better reconstruction performances, whose investiga-
tion is left as future work.

We use the well-known “Lena” and “Cameraman” images and
the “Shepp-Logan” phantom as our test images. Due to space limi-
tations, we only report results with a 9×9 uniform blur point spread
function, results with other kernels were very similar. White Gaus-
sian noise is added to the blurred images to obtain blurred-signal-
to-noise (BSNR) ratios of 20, 30, and 40dB. As the convergence
criterion in the proposed algorithm, we used ‖ x̂k − x̂k−1 ‖2 / ‖
x̂k−1 ‖2< 10−5, where x̂k is the image estimate at iteration k.

Table 1 shows the quantitative ISNR results, where ISNR is de-
fined as 10 log10(‖ x − y ‖2 / ‖ x − x̂ ‖2), where x, y and x̂
are the original, observed, and estimated images, respectively. The
first observation from Table 1 is that the method with the Gaussian
image priors is outperformed in all cases by the other methods, as
expected. Second, it is clear that the proposed method outperforms
the other methods in 7 out of 9 cases, whereas in the other cases it
provides ISNR results very close to the best-performing method Stu-
dent’s t. Note, however, that this method incorporates more complex
curvelet filters than the ones incorporated in this work.

A particularly interesting result is with the Shepp-Logan phan-
tom, where the proposed algorithm and IRLS provide much higher
ISNR results than the other methods. This is due to the fact that
the Shepp-Logan phantom can be represented with a highly sparse
edge structure, and these methods enforce sparsity in the filter out-
puts to a much higher extent than the other methods. Moreover, it
is clear that the proposed algorithm is more effective in enforcing
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(a) (b)

(c) (d)

Fig. 1. (a) Original Shepp-Logan phantom, (b) Image degraded by a
9 × 9 uniform PSF and BSNR=30dB, (c) Restored image using the
proposed algorithm (ISNR = 24.19dB), (d) Restored image using the
IRLS method with p = 0.8 (ISNR = 14.36dB).

sparsity than IRLS, as the ISNR results in all noise levels demon-
strate. On the other hand, with the more realistic images “Lena” and
“Cameraman”, the proposed algorithm still provides higher restora-
tion performance than IRLS.

The original, degraded, and restored images for the Shepp-
Logan phantom are shown in Fig. (1), and for the Lena image in
Fig. (2) both for the BSNR=30dB case. For the IRLS method, the
image corresponding to the the maximum ISNR achieved during the
iterations is shown. On the other hand, the parameters of the pro-
posed method are automatically calculated and the images obtained
at the convergence are shown. Despite full-automation, in both cases
the proposed method provided restored images with higher visual
quality.

Finally, the computational complexity of the proposed algorithm
is similar to (and even lower than some of) the other algorithms.
Moreover, the computational complexity of the algorithm can be sig-
nificantly improved with a straightforward application of operator
splitting schemes as in [2].

5. CONCLUSIONS
In this paper we presented a novel Bayesian algorithm for image
restoration and parameter estimation using independent Gaussian
image priors placed on high-pass filter outputs of the image. We
adopt a fully-Bayesian analysis to jointly estimate the original image
and the unknown hyperparameters (including the observation noise)
such that no parameter tuning is necessary. We have shown that the
proposed formulation is a special case of the non-convex lp-norm
based image priors with p = 0, but it results in a convex optimiza-
tion problem. Finally, we demonstrated with experimental results
that the proposed algorithm provides higher restoration performance
than state-of-the-art algorithms in most cases. Future work includes
utilizing more complex high-pass filters and extending the frame-
work to blind deconvolution.

(a) (b)

(c) (d)

Fig. 2. (a) Original Lena image, (b) Image degraded by a 9 × 9
uniform PSF and BSNR=30dB, (c) Restored image using the pro-
posed algorithm (ISNR = 6.24dB), (d) Restored image using the
IRLS method with p = 0.8 (ISNR = 5.96dB).
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