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ABSTRACT

Super-resolution (SR) algorithms for compressed video aim

at recovering high-frequency information and estimating a

high-resolution (HR) image or a set of HR images from a se-

quence of low-resolution (LR) video frames. In this paper we

present a novel SR algorithm for compressed video based on

the maximum a posteriori (MAP) framework. We utilize a

new multichannel image prior model, along with the state-

of-the art image prior and observation models. Moreover,

relationship between model parameters and the decoded bit-

stream are established. Numerical experiments demonstrate

the improved performance of the proposed method compared

to existing algorithms for different compression ratios.

Index Terms— Image restoration, MAP framework, mul-

tichannel prior, resolution enhancement, video coding.

1. INTRODUCTION

The SR problem is an inverse problem that requires a regu-

larized solution. In most of the Bayesian formulations which

have been used for this problem so far, single channel im-

age priors have been adopted [1], whereas other works uti-

lize both non-Bayesian and Bayesian [2] total variation (TV)

techniques. As far as the imaging models are concerned,

many techniques incorporate the motion field (MF) informa-

tion provided by the HR data [3] into the model, whereas oth-

ers do not.

In this paper we address the compressed video SR problem

utilizing a MAP approach. The main contribution of this work

is the use of a new multichannel prior that incorporates the

registration information between frames. Such multichannel

approaches have been used successfully in the past for com-
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pressed video reconstruction [4]. Nevertheless, they were de-

terministic and the multichannel idea was basically imposed

by using regularization between frames. The efficacy of the

multichannel prior has already been proved for uncompressed

data [5]. However, the compressed bitstream introduces other

departures into the SR problem, which are taken into account

in this work.

This paper is organized as follows. Sec. 2 describes the

appropriate mathematical background. In Sec. 3 we intro-

duce a MAP problem formulation for the SR of compressed

video regarding two existing models as well as the proposed

one, along with the corresponding algorithms. Experimental

results are illustrated in Sec. 4, indicating the benefits of the

new prior. Finally, Sec. 5 concludes the paper.

2. MATHEMATICAL BACKGROUND

2.1. Observation Models

In this paper we use two different observation models. In the

first one the relationship between an uncompressed LR obser-

vation frame gi and its HR counterpart fi is given in matrix-

vector form by (all images are lexicographically ordered into

vectors)

gi = AHfi + ni, i = 1, 2 . . . P, (1)

where gi and fi are of dimensions MN × 1 and LMLN × 1,

respectively, A is the MN ×LMLN down-sampling matrix,

H is the LMLN ×LMLN known blurring matrix, ni of size

MN × 1, represents the additive white Gaussian (acquisition)

noise (AWGN) term, P represents the total number of frames

and L denotes the resolution enhancement factor.

The compressed observation of the ith LR frame yi is there-

fore expressed as

yi = T−1Q[T(gi −M(vi,j)yj)] + M(vi,j)yj , j = 1 . . . P,
(2)

where vi,j is the vector containing the transmitted motion vec-

tors that predict frame i from a previously compressed frame

j, Mi,j = M(vi,j) represents the 2-D matrix of size MN ×
MN which describes the mapping of frame yj into frame yi,
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Q[·] denotes the quantization procedure, T and T−1 are the

forward and inverse transform operations and gi−M(vi,j)yj

is the motion compensation error. Combining (1) and (2) the

relationship between any LR and HR image becomes

yi = T−1Q[T(AHfi − yMV
i + ni)] + yMV

i , (3)

where the motion compensated estimate of frame i is denoted

by yMV
i = M(vi,j)yj .

Given that Q[·] introduces compression noise into the de-

coded frames, which is dominant over the acquisition noise,

we approximate the quantity T−1Q[T(AHfi − yMV
i + ni)]

by

AHfi − yMV
i + ei, (4)

where ei ∼ N(0, Ki) is the quantization noise model and

Ki is the covariance matrix in the spatial domain for the ith
frame. Assuming an independent and identically distributed

(IID) noise process, similarly to [1], Ki = ε−1
i I, where I is

the identity matrix of size MN × MN and εi is the inverse

quantization noise variance (precision parameter). Combin-

ing (3) and (4), we obtain

yi = AHfi + ei. (5)

The second imaging model used in this paper, is defined as

gi = AHD(di,k)fk+wi,k, i = k−m, . . . , k, . . . , k+n, (6)

with wi,k a column vector of size MN × 1 representing the
total contribution of the noise term (registration and acquisi-

tion errors) which is again modelled as AWGN and n, m in-

dicate respectively the number of frames used in the forward

and backward temporal directions (n + m + 1 = P ) with re-

spect to the kth frame. Moreover, D(di,k) is the 2-D motion

compensation matrix of size LMLN × LMLN , mapping

frame fk into frame fi with the use of di,k (displacements).

Following the previously analyzed steps, we state the rela-

tionship between any LR and HR image as

yi = AHDi,kfk + ei,k, (7)

where D(di,k) = Di,k and ei,k ∼ N(0, Ki,k) is the quan-

tization noise model with Ki,k = ε−1
i,k I representing the co-

variance matrix in the spatial domain for the ith frame, where

εi,k is the precision related to both quantization and registra-

tion noise components.

Moreover, in both these observation models the noise com-

ponent by the motion vectors provided in the compressed bit-

stream should be incorporated, which is modelled as

yMV
i = M(vi,j)yj = AHDi,jfj + wij,MV , (8)

where based on the assumptions stated in [1] wij,MV ∼
N(0, Kij,MV ) and Kij,MV = δ−1

i,j I is the respective covari-

ance matrix in the spatial domain for the ith frame (δi,j is the

precision related to the displaced frame difference (DFD)).

Clearly, in the case of the second observation model j=k.

2.2. Image Prior Models

In this work we consider two prior models in order to penal-

ize compression errors. The first one, is the new multichannel
prior proposed in [5], which takes into account both within

frame smoothness and between-frame smoothness incorpo-

rated through the motion (MF) information. More specifi-

cally, the multichannel prior pdf is expressed as

p(̃f; β̃, α̃) ∝
k+n∏

i=k−m

k+n∏
j=k−m

j �=i

p(fi|fj ; βi,j)p(fj ; αj), (9)

where f̃ = [fTk−m, . . . , fTk , . . . , fTk+n]T and T denotes the

transpose of a matrix or vector. Moreover, p(fi|fj ; βi,j) ∝
exp(−βi,j

2 ‖fi −Di,jfj‖2), with Dj,i = (Di,j)T = D(dj,i)
and matrix (Di,j)T represents the operation of backward mo-

tion compensation along the motion vectors. The second

image prior p(fj ; αj) ∝ exp(−αj

2 ‖Qfj‖2) is related to the

smoothness within each frame, and is modelled by a Si-

multaneously Autoregressive (SAR) distribution, where Q
represents a linear high-pass convolutional operator of size

LMLN × LMLN , ‖ · ‖ denotes the l2 norm and the pa-

rameter αj accounts for the within channel precision. Thus,

β̃ and α̃ are the column vectors that contain the parameters

βi,j and αj , respectively (βi,j represents the precision of the

motion compensation error between the HR frames i and j).

The prior in (9) can be rewritten using m = n as [5]

p(̃f; β̃, α̃) ∝ exp[−1
2
f̃T Ω̃f̃ ], (10)

where Ω̃ is not given in closed form due to space limitations.

3. MAP PROBLEM FORMULATION AND
PROPOSED ALGORITHM

In this section we present a MAP problem formulation for the

SR of compressed video, based on the proposed algorithm

and on two already existing ones.

3.1. Proposed Model

In the proposed model, the observation term described

by (5) and (8), is combined with the new multichan-
nel prior expressed by (10). Following [1] (taking

into account all possible combinations of the HR mo-

tion fields and the compressed LR motion fields) the

objective function becomes JMAP (̃f|ỹ, ṽ; δ̃, ε̃, β̃, α̃)∝ −
2 log[p(ỹ, ṽ|̃f; δ̃, ε̃)p(̃f; β̃, α̃)],where ỹ, ṽ, δ̃ and ε̃ are the

column vectors containing the decoded observations, all pos-

sible combinations of the motion vectors provided by the

compressed bitstream, all δi,j parameters and all εi param-

eters respectively, and its minimization results in

αj =
(LMLN − 1)∥∥Qf j

∥∥2 , βi,j =
LMLN

‖fi −Di,jfj‖2
, (11)
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εi =
MN

‖yi −AHfi‖2
, δi,j =

MN∥∥yMV
i −AHDi,jfj

∥∥2 , (12)

(G̃ + Ω̃)̂̃f = Λ̃ỹ, (13)

where

G̃ = diag{(Γk−m + Θk−m), ..., (Γk+m + Θk+m)}
and

Λ̃ = diag{(Δk−m + Φk−m), ..., (Δk+m + Φk+m)},
with

Γj = εjH
T AT AH, Θj =

k+m∑
i=k−m

δi,jDj,iHT AT AHDi,j ,

Δj = εjH
T AT , Φj =

k+m∑
i=k−m

δi,jDj,iHT AT Mi,j .

In this model the (HR) MF information is also taken

into account through the prior, while simultaneous SR (and
restoration) of all the HR frames is taking place which is not

the case in models 1 and 2, which are presented next. Clearly

the proposed model is specifically designed for compressed

video, given that as can be seen in (12) the motion vector in-

formation provided by the compressed bitstream is used, the

precision related to the quantization noise is also estimated

and all these are incorporated in (13).

3.2. Model 1

The simplest approach to the studied problem is to use a sin-

gle decoded channel to obtain the observation model of (5). In

this case no motion information is used and the video frames

are super resolved without using any of the adjacent channels.

Combining (5) with the SAR prior model the MAP estimate

results in [5]

αi =
(LMLN − 1)
‖Qf i‖2

, εi =
MN

‖yi −AHf i‖2
, (14)

(
HT AT AH +

αi

εi
QT Q

)
f̂i = HT AT yi, (15)

where AT defines the up-sampling operation.

3.3. Model 2

This model is based on [1], where the observation model is

now described by (7) and (8) (for j=k) and the image prior

consists of the within frame SAR prior, as in model 1. There-

fore, motion information between video frames is utilized

only by the observation model. Consequently, the respective

MAP estimate yields

εi,k =
MN

‖yi −AHDi,kfk‖2
, δi,k =

MN∥∥yMV
i −AHDi,kfk

∥∥2 ,

(16)

(J̃ + αkQT Q)f̂k = Z̃, (17)

where J̃ =
k+m∑

i=k−m

[(εi,k + δi,k)Dk,iHT AT AHDi,k] and

Z̃ =
k+m∑

i=k−m

[εi,kDk,iHT AT yi + δi,kDk,iHT AT Mi,kyk],

whereas the estimation of parameter αk is given by the left

hand side term of (14) for i = k and Mi,k = M(vi,k).
Finally, (13), (15) and (17) can not be solved in closed

form, due to the non-circulant nature of the matrices A,AT ,

Di,j and Mi,j . Thus, we resorted to a numerical solution

using a conjugate-gradient (CG) algorithm.

4. EXPERIMENTAL RESULTS

In this section we present numerical experiments to evaluate

the proposed method and also justify the benefits provided in

compressed video by the use of the new multichannel prior

based on (10). In all presented results, the influence of the

compression ratio on the SR procedure is also considered, uti-

lizing the H.264 / AVC. The central 256 × 256 region of first

five frames of the sequence “Mobile” (CIF format) was se-

lected for the HR intensities. The temporal rate for the LR se-

quence is 30 frames per second. Except for the first image in

the sequence, which is intra-coded, each frame is compressed

as a P-frame. We experimented with two bit-rates 1.63 Mbps

and 564 kbps, corresponding to a “high” and “low” quality

coding application respectively.

In both bit-rate scenarios the quantization parameter was

selected equal to 16. In the “high” quality scenario the input

sequence to the encoder was not blurred (H = I), whereas

in the “low” quality case uniform 9 × 9 blur was used. Af-

ter blurring, the frames are down-sampled by a factor of two

(L = 2).

The metrics used to quantify performance was the im-

provement in signal-to-noise ratio (ISNR) defined (in dB) as

ISNR = 10 log10

(
‖fi − yi,I‖2 /

∥∥∥fi − f̂i
∥∥∥2

)
, where yi,I

denotes the bicubic interpolation of the ith LR observation

and the visual information fidelity (VIF) defined within the

range [0,1] [6].

In model 1, denoted by m1, the bicubically interpolated

LR observations served as initial conditions for the CG algo-

rithm and for the estimation of the parameters. The algorithm

in model 2 (denoted by m2 ) and in the proposed model (de-

noted by pm) is initialized by model 1 from which the motion

estimation was also performed using a 3-level hierarchical

block matching algorithm with integer pixel accuracy at each

level. For the CG algorithm implementation, matrices Di,j

were initially estimated and remained fixed (the same holds

for the estimated precision parameters). The aforementioned

procedure was also used to estimate matrices Mi,j given the

decoded LR observations in order to get better estimates for

the motion vectors vi,j with respect to their values given by

the compressed bitstream. In all models, the CG iterations are

terminated when
∥∥fnew

k − fold
k

∥∥2
/

∥∥fold
k

∥∥2
< 10−6.
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(a) (b)

(c) (d)
Fig. 1. SR results for 1.63Mbps. Result after (a) bicubic in-

terpolation of the LR observation, (b) m1, (c) m2, (d) pm.

Table 1 shows the ISNR results along with the VIF values

among all 3 models for both bit-rate cases, whereas in table

2 the ISNR results are given for all 3 models when uncom-

pressed data is used. All results pertain to the middle frame.

Table 1. ISNR (in dB) and VIF comparison
Bit−rate: 1.63Mbps/564kbps ISNR V IF

Model1 0.69/2.28 0.26/0.19
Model2 2.21/2.32 0.33/0.20

Proposed Model 3.33/2.71 0.38/0.23

Table 2. ISNR (in dB) comparison for uncompressed data
No blur case/Un. blur 9 × 9 case ISNR

Model1 0.59/0.95
Model2 1.89/1.23

Proposed Model 2.83/1.36
A noteworthy observation is the robustness of the proposed

model in terms of both ISNR and VIF in the cases where it is

used for compressed data compared to its respective utiliza-

tion for uncompressed data and the extra gain is due to the

removal of the artifacts which are introduced by the compres-

sion procedure.

Examples of recovered HR frames are shown in Figures

1 and 2. Clearly, the proposed algorithm outperforms the

other two already existing methods. The numbers are sharper,

stripes are also improved, while in the high bit-rate scenario

the circles on the ball are better defined and the tip of the train

is less jagged given the removal of compression artifacts.

5. CONCLUSIONS
In this paper, we presented a MAP approach of a new mul-

tichannel image prior applied to the compressed video SR

problem, along with 3 algorithms and their comparative study.

The experimental results show in all cases that the proposed

algorithm performs better than previous ones in terms of both

(a) (b)

(c) (d)
Fig. 2. SR results for 564kbps. Result after (a) bicubic inter-

polation of the LR observation, (b) m1, (c) m2, (d) pm.

ISNR and VIF, as well as visual quality. Moreover, the com-

parison between model 2 and the proposed one strongly in-

dicates that the use of MF in the prior term is much more

efficient than its use in the observation term, in terms of both

restoration capability and resolution enhancement.
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