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ABSTRACT
In this paper, we propose a symmetrical EEG/fMRI fusion algorithm
which combines EEG and fMRI by means of a common generative
model. The use of a total variation (TV) prior as well as spatially
adaptive temporal priors enables adaptation to the local character-
istics of the estimated responses. We utilize an approximate varia-
tional Bayesian framework and obtain a fully automatic fusion algo-
rithm. Simulation results demonstrate that the proposed algorithm
outperforms existing EEG/fMRI fusion methods.

Index Terms— EEG, fMRI, total variation (TV), variational
Bayesian methods.

1. INTRODUCTION

Functional neuroimaging allows for spatial and temporal localiza-
tion of neurological activity. It is therefore an invaluable tool for
gaining a better understanding of the brain. In recent years, func-
tional magnetic resonance imaging (fMRI) has become a prominent
neuroimaging method as it enables accurate localization of neuro-
logical activity, typically within millimeters. However, the temporal
resolution of fMRI is in the order of seconds, which limits its use for
analyzing the temporal aspects of neurological activity. Electroen-
cephalography (EEG) is another functional neuroimaging method,
which measures the electrical activity in the brain via electrodes
placed on the surface of the scalp. While EEG can achieve sub-
millisecond resolution, the spatial resolution is considered poor as
it is generally not possible to determine the source of the activity
using EEG recordings alone. This limitation is due to the fact that
EEG source localization using the distributed source framework [1]
involves solving the following ill-posed inverse problem

M = LS + η1, (1)

where M is a m×t1 matrix containing the EEG recordings obtained
from m electrodes placed on the scalp, S is a n×t1 matrix represent-
ing the responses of n normal-oriented current dipoles distributed on
the cortical surface, L is a known m×n forward operator, which can
be calculated using anatomical information, and η1 is a m × t1 ma-
trix representing noise. Clearly, estimating S is an ill-posed problem,
since the number of dipoles n is typically several orders of magni-
tudes larger than the number of electrodes m (a typical scenario is
m = 64, n = 5000). In order to find a unique solution it is neces-
sary to make additional assumptions, which can be incorporated in
the form of deterministic regularization terms, or in the form of pri-
ors when a Bayesian formulation is used. In our work we follow the
approach where spatial information from fMRI is utilized in order to
find a more meaningful solution to the inverse problem. The idea is
that the sources of hemodynamic activity measured by fMRI often

coincide with sources of electrical activity measured by EEG. This
concept was used in the fMRI weighted minimum norm algorithm
[2] and more recently in [3], where a Bayesian framework is used
to “fuse” fMRI and EEG in a symmetrical fashion. We follow the
symmetrical approach and augment it in several ways leading to sig-
nificant improvements in estimation quality. More specifically, we
use a total variation (TV) prior for the spatial profile of the corti-
cal activity, which leads to spatially adaptive spatial smoothness and
consequently to the preservation of sharp boundaries at the edges of
active brain regions. We also utilize spatially adaptive temporal pri-
ors, allowing for adaptation of the degree of temporal smoothness
according to the estimated activity in different brain regions. We uti-
lize approximate variational Bayesian inference methods and obtain
a fully automatic EEG/fMRI fusion algorithm. Using simulations
we demonstrate that the proposed algorithm outperforms existing
EEG/fMRI fusion methods.

We use the following notation throughout this paper: Ai· de-
notes a row vector containing the elements of the i-th row of A,
while A·i is a column vector containing the elements of the i-th col-
umn of A. The operator diag (A) extracts the main diagonal of A
as a column vector, whereas Diag (a) is a diagonal matrix with a
as its diagonal. The operator vec (A) vectorizes A by stacking its
columns and ⊗ denotes the Kronecker product.

The paper is organized as follows. In Section 2, the hierarchical
generative model is introduced. The Bayesian inference procedure
is shown in Section 3. Experimental results are presented in Section
4 and conclusions are drawn in Section 5.

2. HIERARCHICAL GENERATIVE MODEL

In this section we define a joint hierarchical generative model which
explains both, the EEG and fMRI observations. Since there is no
generally accepted model for the coupling between hemodynamic
and current responses, we resort to the symmetrical EEG/fMRI fu-
sion model by Daunizeau et al. [3]. The model assumes that the
electric activity can be described by q temporally coherent parcels,
each having a distinct response waveform. This assumption is for-
malized by

S = Diag
“
wEEG

”
CX + R1, (2)

where C is a n × q matrix defining the parceling (Cij = 1 if i ∈
Pj , the j-th parcel, Cij = 0 otherwise), wEEG is a n × 1 vector
representing the unknown spatial profile of electric activity, X is a
q×t1 matrix with the unknown response waveforms, and R1 is a n×
t1 matrix representing residual activity which cannot be explained by
the model.

In order to obtain a similar hierarchical description for fMRI,
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we first introduce the fMRI observation model [4], which models
the measurements by

Y = BH + η2, (3)

where Y is the t2 × n matrix containing the fMRI measurements
at n locations on the cortical surface (we assume here that the lo-
cations coincide with the locations of the EEG current dipoles), H
is a k × n matrix representing the hemodynamic response function
(HRF) of length k at each location, η2 is the t2 × n matrix with ad-
ditive noise, and B is a known t2 × k convolution matrix describing
the experimental protocol, as defined in [4]. By making the same
coherency assumptions as for EEG, a hierarchical description of the
HRFs for all locations is obtained

H = ZCT Diag
“
wfMRI

”
+ R2, (4)

where Z is a k × q matrix containing the unknown HRFs of the
parcels, wfMRI is a n × 1 vector describing the spatial profile, and
R2 is a k ×n matrix representing the modeling residual. In order to
establish a connection between the imaging modalities, a common
spatial profile is assumed, i.e.,

wEEG = wfMRI = w. (5)

2.1. Bayesian Modeling

We proceed by defining a graphical model. As depicted in Fig. 1 and
explained next. By defining a probability density function (pdf) for
each node of the model we can obtain the joint pdf and consequently
derive a Bayesian inference procedure, as described in the next sec-
tion. The acquisition noise for EEG and fMRI is assumed to be
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Fig. 1. Graphical Model (gray: known, white: unknown)

zero mean, i.i.d., Gaussian, resulting in the following observation
probabilities

p (M|S, α1) =

t1Y
i=1

N `
M·i|LS·i, α

−1
1 Im

´
, (6)

p (Y|H, α2) =
nY

i=1

N `
Y·i|BH·i, α

−1
2 It2

´
, (7)

where α1 and α2 are the noise precisions for EEG and fMRI, respec-
tively. We make the same assumptions about the modeling residuals
and obtain the following hierarchical priors for the current responses
and HRFs

p (S|X,w, ε1) =

t1Y
i=1

N `
S·i|Diag (w)CX·i, ε

−1
1 In

´
, (8)

p (H|Z,w, ε2) =
kY

i=1

N
“
HT

i· |Diag (w)CZT
i· , ε

−1
2 In

”
. (9)

The Bayesian formulation allows for an elegant way to model
prior knowledge about the nature of the problem by means of prior
distributions. For the problem at hand, we know that event related
processing in the brain occurs in a number of specialized brain re-
gions. Consequently it can be assumed that the spatial profile w con-
tains sharp boundaries between active and inactive regions. We in-
corporate this a priori assumption by utilizing a total variation (TV)
prior given by the Gibbs distribution

p (w|γ) =
1

Z(γ)
exp (−γTV (w)) , (10)

where Z(γ) is the partition function and TV(·) is the energy func-
tion of the form TV(w) =

P
c∈C Vc(w), where C denotes a set of

cliques and Vc is a potential function defined on a clique. We define
a discrete version of the TV integral for w as follows

TV(w) =

nX
i=1

s X
j∈ci,i�=j

(wi − wj)
2, (11)

where ci denotes a clique of size 3 for the i-th dipole. The cliques are
obtained by a simple heuristic algorithm which selects two neighbors
for each vertex from the graph describing a triangular tessellation
of the cortical surface. Due to space limitations, the details of the
algorithm are omitted.

In order to be able to estimate the parameter γ, we need to ap-
proximate the partition function Z(γ). Note that we can calculate
the partition function for a single location on the cortex asZ Z

exp
“
−γ

p
u2 + v2

”
dudv =

2π

γ2
. (12)

Using this we approximate p (w|γ) in (10) as

p (w|γ) = cγϕn exp (−γTV (w)) , (13)

where c is a constant and ϕ is a parameter with a value of ϕ = 2.0
if all locations are assumed to be independent. Due to the depen-
dence between the locations, we empirically find that using ϕ = 1.0
improves the performance of the algorithm.

We also make the a priori assumption that the hemodynamic
response functions and the current responses are smooth in the tem-
poral dimension. This assumption can be expressed by a Gaussian
prior which penalizes the second order temporal derivative; a prior
of this form was also used in [3, 4]. In contrast to previous work,
we assume that the temporal characteristics of the responses vary
across different brain regions. We model this by utilizing a separate
Gaussian prior for every parcel, i.e.,

p (X|β1) =

qY
i=1

N
„
XT

i· |0, (β1)
−1
i

“
TT

(t1,1)T(t1,1)

”−1
«

, (14)

p (Z|β2) =

qY
i=1

N
„
Z·i|0, (β2)

−1
i

“
TT

(k,1)T(k,1)

”−1
«

, (15)

where T(a,b) is a ab × ab matrix given by

(T(a,b))ij =

8><
>:
−2 if i = j,

1 if j = i ± b,

0 otherwise,

, (16)

where β1 and β2 are q × 1 vectors with per-parcel smoothness pre-
cision hyperparameters. The use of separate hyperparameters allows
for spatially adaptive temporal smoothness, i.e., the model can re-
duce the degree of temporal smoothness in active regions while en-
forcing more smoothness in inactive regions.

Following the Bayesian approach we proceed by defining priors
for all hyperparameters of the model. We use gamma densities for
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the noise precisions, i.e.,

p (α1) = Γ
`
α1|a0

α1 , b0
α1

´
, p (α2) = Γ

`
α2|a0

α2 , b0
α2

´
, (17)

where the shape and scale parameters are obtained from pre-stimulus
data (see [3]). We make no assumptions about the remaining hy-
perparameters and consequently use noninformative Jeffreys priors
given by

p (θi) ∝ (θi)
−1 ∀ θi ∈ θ, (18)

where θ = {(β1)1 . . . (β1)q, (β2)1 . . . (β2)q, ε1, ε2, γ}.

3. BAYESIAN INFERENCE

Inference is based on the posterior distribution

p (Θ|M,Y) ∝p (M|S, α1) p (S|X,w, ε1) p (X|β1)

× p (Y|H, α2) p (H|Z,w, ε2) p (Z|β2) (19)

× p (w|γ) p (θ) ,

where Θ = {S,H,w,X,Z, α1, α2} ∪ θ. Since calculating
p (Θ|M,Y) is intractable, we employ the mean field approxi-
mation, i.e., we find a distribution which factorizes over the nodes
of the graphical model

q (Θ) =q (S) q (H) q (w) q (X) q (Z) q (α1) q (α2)

× q (ε1) q (ε2) q (γ)

qY
i=1

q ((β1)i)

qY
i=1

q ((β2)i) . (20)

The approximate posterior is found by performing a variational min-
imization of the Kullback-Leibler (KL) divergence between the true
posterior and q (Θ), a technique known as the Variational Bayesian
(VB) method. As it turns out, the form of the TV prior prevents us
from finding q (Θ) analytically; we resort to the method proposed
in [5] to find a lower bound to p (w|γ) for which the variational
minimization can be performed. First, consider the inequality

√
ab ≤ a + b

2
⇒ √

a ≤ a + b

2
√

b
, (21)

for a ≥ 0 and b ≥ 0. We proceed by defining for w, γ, and an n×1
vector u ∈ (R+)n, the following functional:

M(w,u, γ) =

cγϕn exp

0
@−γ

2

nX
i=1

hP
j∈ci,i�=j (wi − wj)

2
i

+ ui

√
ui

1
A . (22)

By comparing (13) with (22) and inequality (21) with a =P
j∈ci,i�=j (wi − wj)

2
and b = ui, we obtain

p (w|γ) ≥ M(w,u, γ) . (23)

Using (23) in (19), we obtain a lower bound to the posterior, i.e.,

p (Θ|M,Y) ≥ M(Θ,u,M,Y) . (24)

As in the regular VB framework, we proceed by performing a vari-
ational minimization of the KL divergence. However, instead of the
true posterior (19) we utilize its lower bound and obtain

q (Θi) ∝ exp
`
EΘ\Θi

[lnM (Θ,u,M,Y)]
´
, (25)

where the expectation is calculated over all variables except the vari-
ables of interest. It can be shown that sequentially updating the suf-
ficient statistics of all approximate marginal distributions results in
a monotonically decreasing upper bound to the KL divergence be-
tween q (Θ) and the true posterior; for details refer to [5]. Due to
limited space, we only show the approximate marginal pdfs which

are different than those in [3]. Using (25) we find

q (X) = N (vec (X) |vec (〈X〉) , ΣX) , (26)

vec (〈X〉) = 〈ε1〉ΣX

“
It1 ⊗ CT Diag (〈w〉)

”
vec (〈S〉) ,

ΣX =
“
〈ε1〉 (It1 ⊗ Q) + TT

(t1,q) (It1 ⊗ Diag (〈β1〉))T(t1,q)

”−1

,

and

q (Z) = N
“
vec

“
ZT

”
|vec

“
〈Z〉T

”
, ΣZ

”
(27)

vec
“
〈Z〉T

”
= 〈ε2〉ΣZ

“
Ik ⊗ CT Diag (〈w〉)

”
vec

“
〈H〉T

”
ΣZ =

“
〈ε2〉 (Ik ⊗ Q) + TT

(k,q) (Ik ⊗ Diag (〈β2〉))T(k,q)

”−1

where

Q = CT `
Diag (diag (Σw)) + Diag (〈w〉)2´

C. (28)

For the spatial profile w we obtain

q (w) = N (w|〈w〉, Σw) , (29)

〈w〉 = Σwdiag
“
〈ε1〉〈S〉〈X〉T CT + 〈ε2〉〈H〉T 〈Z〉CT

”
,

Σ−1
w = 〈ε1〉E

h
Diag

“
diag(CXXT CT )

”i
+ 〈γ〉

“
NT

1 W (u)N1

”
+ 〈ε2〉E

h
Diag

“
diag(CZT ZCT )

”i
+ 〈γ〉

“
NT

2 W (u)N2

”
,

where N1 is a n × n matrix defined as

(N1)ij =

8><
>:

1 if i = j,

−1 if vertex j is the 1st neighbor of vertex i

0 otherwise,

(30)

N2 is defined the same way but for the second neighbor, and W (u)
is an n × n diagonal matrix where the i-th element on the main
diagonal is given by 1/√ui. Note that spatial adaptivity is intro-
duced through the matrix W (u), as it controls the degree of spatial
smoothness for each vertex. The pdfs of the temporal smoothness
precision hyperparameters are found to be gamma distributions; they
are given by

q
`
(β1)i

´
= Γ

`
(β1)i |(aβ1)i, (bβ1)i

´
, (aβ1)i =

t1
2

, (31)

(bβ1)i =
1

2
E

h
Xi·T

T
(t1,1)T(t1,1)X

T
i·

i
,

and

q
`
(β2)i

´
= Γ

`
(β2)i |(aβ2)i, (bβ2)i

´
, (aβ2)i =

k

2
, (32)

(bβ2)i =
1

2
E

h
ZT

·iT
T
(k,1)T(k,1)Z·i

i
.

Also q (γ) is found to be gamma distributed, with the pdf given by

q (γ) = Γ (γ|aγ , bγ) , aγ = ϕn, bγ =

nX
i=1

√
ui. (33)

The inference algorithm iteratively updates the sufficient statis-
tics of all marginal pdfs and performs a minimization with respect to
u during every iteration. The minimizer can be found in closed form
since (22) is convex with respect to u; it is given by

ui = E

2
4 X

j∈ci,i�=j

(wi − wj)
2

3
5 . (34)

The algorithm iterates until a convergence criterion is satisfied.
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(a) Ground Truth (b) fMRI-WMN (c) BASTERF (d) Proposed

Fig. 2. Current amplitudes estimated for one simulation of scenario S1 projected onto the cortex at the peak activity of the first EEG source
(t = 20). It can be seen that the proposed algorithm allows for sharper boundaries and the estimated currents are closer to the ground truth.

4. EXPERIMENTAL RESULTS

We perform a number of simulations using synthetic data in order
to evaluate the performance of the proposed method. The simula-
tion methodology is similar to the one used in [3] and consists of
generating synthetic data by placing sources at random locations on
the cortical surface. For each simulation, two sources are generated;
each source can be electrically active, hemodynamically active, or
both, depending on the simulation scenario. The different simulation
scenarios allow us to assess the robustness of our algorithm in situ-
ations where the neurological activity of a source is only detectable
via one imaging modality. The first scenario (S1) represents the ideal
case where both sources are hemodynamically and electrically ac-
tive. Scenarios S2 and S3 are mixed cases where one source is either
hemodynamically or electrically inactive, respectively. In the last
scenario (S4) one source is electrically active and the other source
is hemodynamically active; the scenario can therefore be considered
the worst case scenario since the EEG source localization does not
benefit from the information provided by fMRI. Mean squared error
(MSE) scores averaged over 25 simulations per scenario are shown
in Table 1. As can be seen the proposed method outperforms ex-
isting state-of-the-art algorithms, i.e., the fMRI weighted minimum
norm algorithm (fMRI-WMN) [2] as well as the “BASTERF” algo-
rithm [3]. The performance of the proposed method is also illus-
trated in Fig. 2, where the estimated currents are projected onto the
cortex. The spatial adaptivity of the proposed algorithm increases
the estimation accuracy and allows for sharper boundaries between
active and inactive regions. It is clear that the proposed method pro-
vides the most accurate source localization result among the evalu-
ated methods.

fMRI-WMN BASTERF Proposed
S1 1.666 × 10−3 1.578 × 10−3 0.723 × 10−3

S2 2.383 × 10−3 2.196 × 10−3 1.808 × 10−3

S3 0.881 × 10−3 0.813 × 10−3 0.311 × 10−3

S4 1.520 × 10−3 1.209 × 10−3 1.198 × 10−3

Table 1. Table 1: Average MSE S

The parameters used for the simulations are as follows: m = 64,
n = 1028, t1 = 50, t2 = 1000, k = 30, q = 32, ϕ = 1.0,
Peak-SNR EEG = 500, Peak-SNR fMRI = 1.0. The parcellation
was obtained by aligning the cortical mesh with an anatomical atlas
[6]. The sources consist of compact clusters of 8 dipoles. For EEG
half sine curves with a length of 20 time points are used as source
waveforms, while a canonical HRF shape is used for fMRI.

5. CONCLUSIONS

We propose a symmetrical EEG/fMRI fusion algorithm which uti-
lizes spatially adaptive priors. The algorithm combines the modali-
ties by means of a common generative model, representing a formal
way of including fMRI information into the ill-posed EEG source lo-
calization problem. Spatial adaptivity is achieved by means of a TV
prior, which is used for the spatial profile, as well as spatially adap-
tive temporal priors, which enable the algorithm to adapt the degree
of temporal smoothness according to the responses in different brain
regions. Since calculating the posterior is intractable and the form
of the TV prior prevents calculating the mean field approximation
to the posterior analytically, we resort to an approximate variational
Bayesian method [5] to draw inference. Experimental results show
that our algorithm outperforms existing EEG/fMRI fusion methods,
in terms of MSE, as well as, preservation of sharp edges in the solu-
tion.
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