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ABSTRACT
We present a new image restoration method based on mod-
elling the coefficients of an overcomplete wavelet response to
natural images with a mixture of two Gaussian distributions,
having non-zero and zero mean respectively, and reflecting
the assumption that this response is close to be sparse. Includ-
ing the observation model, the resulting procedure iterates be-
tween image reconstruction from the hard-thresholding of the
response to the current estimate and a fast blur compensation
step. Results indicate that our method compares favorably
with current wavelet-based restoration methods.

Index Terms— Image restoration, linear representations,
sparsity, hard-thresholding, overcomplete wavelets.

1. INTRODUCTION

Image restoration aims at estimating an image from a de-
graded observation which is generally modelled as a convolu-
tion with a blur matrix plus additive noise. This is an ill-posed
problem even if the degradation parameters are known. The
choice of a good image prior is basic for obtaining good per-
formance. While methods based on prior modelling in the
spatial domain are a very successful approach (e.g., [1]), iter-
ative and global wavelet-based restoration methods (e.g., [2,
3, 4]) and locally adaptive models (e.g., [5, 6]) also produce
image estimates of high quality (see [6]).
Sparsity in the synthesis coefficients of a linear genera-

tive image model is commonly used as prior for overcom-
plete wavelet coefficients (e.g., [7, 8, 2, 3]). But assuming
compressibility (most of the energy concentrated in relatively
few coefficients) in the linear analysis representation, has pro-
vided better results in different applications (e.g., [9, 10, 11]).
In this paper we follow this compressibility approach and

model the distribution of the coefficients of an overcomplete
wavelet response to natural images as a mixture of two Gaus-
sian distributions, one having a non-zero and the other a zero
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mean. They reflect the prior assumption that the response is
close to a sparse vector. This prior model, in combination
with the observation model, produces an image restoration
method which compares favorably, both quantitatively and
qualitatively, with current wavelet-based restoration methods.

2. BAYESIAN MODELLING

The image degradation process is represented here by a linear
and spatially invariant model as

y = Hx + n, (1)

where x, y andn are, respectively, theN×1 lexicographically
ordered original and observed images and the zero-mean
Gaussian noise of variance σ2

n, and H is a block-circulant
matrix. We model the conditional probability p(y|x) as a
Gaussian distribution with meanHx and variance σ2

nI.
LetΦt be a full column rankM×N matrix withM > N ,

satisfying ΦΦt = I. Matrix Φt represents a wavelet analy-
sis operator, typically producing compressible responses to
natural images, so we assume a priori that Φtx = a + r,
where a is a sparse vector and r a Gaussian correction term.
The sparsity of the vector a is enforced by a random vector
z = (z1, . . . , zM )t whose components take, independently,
the value one with probability p << 1. Then, we have the
following prior modelling

p(z) =
M∏
i=1

pzi(1− p)1−zi . (2)

p(x|z,a) =
M∏
i=1

(
1√

2πσr

exp(
−1
2σ2

r

(φt
ix− ai)2)

)zi

·
(

1√
2πσr

exp(
−1
2σ2

r

(φt
ix)2)

)1−zi

, (3)

where σ2
r is the variance of each ri = ai − φt

ix, which is
assumed to be constant for all i in this work. Notice that inte-
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grating out z we have

log p(x|a) =
M∑
i=1

(
p

1√
2πσr

exp(
−1
2σ2

r

(φt
ix− ai)2)

+ (1− p)
1√

2πσr

exp(
−1
2σ2

r

(φt
ix)2)

)
. (4)

Let us discuss briefly the proposed model. Firstly note that
we are defining a prior model not on the image but on a linear
transformation of it, Φtx. Also, we do not assume a prior
distribution on a. Furthermore, the second term in the above
mixture representation is expected to model those coefficients
φt

ix which are close to zero, while the first term corresponds
to high amplitude coefficients. In the next section we perform
Bayesian inference and apply the Iterated Conditional Mode
(ICM) procedure [12] to estimate x, a and z.

3. SOLVING THE OPTIMIZATION PROBLEM

A local maximum of p(x,a, z|y) ∝ p(y|x)p(x|z,a)p(z)
is obtained by maximizing sequentially in a, z and x given
the other two vectors. Let x(n) and z(n) be the estimates
of x and z at iteration n. Then, to find a(n) by maximiz-
ing p(x(n),a, z(n)|y) we have to maximize p(x(n)|z(n),a)
with respect to a (see Eq. (3)), which produces to

a(n) = Φtx(n). (5)

Now for the second step, given x(n) and a(n) we solve

z(n + 1) = arg max
z

p(x(n)|z,a(n))p(z). (6)

¿From Eqs. (2), (3) and (5) we have

zi(n + 1) =

{
1 if p

1−p ≥ exp
(
−1
2σ2

r
(φt

ix)2
)

0 otherwise.
(7)

Since p < 1 − p, we can write e−λ = p
1−p , where λ is a

positive number. Then the condition for zi(n + 1) = 1 in
Eq. (7) becomes |φt

ix| ≥ θ, where θ = σr

√
2λ.

Finally, for the third step we have that x(n + 1) satisfies

x(n + 1) = arg min
x

{
1

2σ2
n

‖y −Hx‖22

+
1

2σ2
r

M∑
i=1

zi(n + 1)(φt
ix− ai(n))2

+
1

2σ2
r

M∑
i=1

(1− zi(n + 1)(φt
ix)2

}
. (8)

Let S(n + 1) be the M ×M diagonal matrix with diagonal
entries Si,i(n + 1) = zi(n + 1). We can rewrite Eq. (8) as

x(n + 1) = arg min
x

{
1

2σ2
n

‖y −Hx‖22

+
1

2σ2
r

‖Φtx− S(n + 1)a(n)‖22
}

, (9)

and so we obtain

x(n+1) = (
1
σ2
r

I+
1
σ2
n

HtH)−1 1
σ2
r

ΦS(n+1)a(n)+
1
σ2
n

Hty.

4. IMPLEMENTATION

Representation used. For highly-textured images, we ob-
served a good comparative performance by using 6-scale
Candes’ Curvelets (redundancy factor, r.f. ≈ 7.2). For little-
textured images, it is better to combine the 9-scale Translation
Invariant Haar Pyramids [6] (TIHP, r.f. ≈ 7) with the 8-scale
Kingsbury’s Dual-Tree Complex Wavelets (DT-CWT, r.f.
= 4). This is done by concatenating the coefficients from
both representations and dividing by

√
0.5 in order to assure

that ΦΦt = I. Real and imaginary part of each complex
coefficient are treated as independent coefficients. Combined
representations often provides a higher potential of finding
good sparse approximations to natural images (e.g., [10]).
Algorithmic parameters. The selection of the algorithmic

parameters λ, σ2
r and σ2

n is crucial for the performance of the
algorithm. We have assumed known or previously estimated
(e.g., [1]) the observation noise variance σ2

n. The variance σ2
r

could be estimated by the variance of {φt
iy}i=1,...,M , but this

is probably a poor estimate of the true value of σ2
r .

We will now examine how λ and σ2
r are updated in the it-

erative procedure. We have analyzed iterative schemes for up-
dating both parameters. By initializing the threshold θ to half
the maximum amplitude of Φty, θ(0), and using a large ini-
tial value of λ, λ(0), we obtain the initial value of σ2

r , σ2
r(0),

from the equation θ(0) = σr(0)
√

2λ(0). The large value of
λ provides a very poor restoration since very few coefficients
are taken into account. Notice that, from e−λ(0) = p(0)

1−p(0) ,
the probability p(0) is very small. To add more coefficients
we can decrease the values of λ and σr at each iteration by
an exponential factor. Notice that this implies that at each it-
eration p(n) increases and the sequence of thresholds θ(n) =
σr(n)

√
2λ(n) is a decreasing one. Similar dynamic thresh-

olding strategies have been successfully used in several appli-
cations (e.g. [10, 11]). Instead of using two decreasing fac-
tors, we have experienced better results by decreasing σ2

r by
a factor of 0.9 and fixing λ for the whole iterative process.
Notice that fixing λ amounts to providing an estimate of the
number of active coefficients.
The iterations are stopped when a maximum number of

iterations is reached (e.g., 200 is used in the experiments) or
the estimated error is above the known variance of the noise,
that is, ‖y −Hx(n)‖22 ≥ σ2

n.

5. EXPERIMENTAL RESULTS

We have used one 512 × 512 highly textured test image,
namely Barbara and two 256 × 256 less textured ones,
Cameraman and House. Restoration quality is measured
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Blur PSF 1 PSF 2 PSF 3 PSF 4 PSF 5
σn ⇒ √

2
√

8
√

0.308 7 2 8

HOUSE
PSNR 25.62 25.47 24.11 28.10 27.83 30.01
[2] 8.47 6.63 10.71 4.22 4.49 4.76
[6] 8.64 7.03 9.04 4.30 4.11 6.02
[4] 9.05 7.64 10.71 5.10 4.03 6.13

Proposed 8.13 6.32 10.80 4.22 4.74 3.89
CAMERAMAN

PSNR 22.23 22.16 20.77 24.63 23.26 29.83
[8] 6.93 4.88 7.59 2.94 -/- -/-
[2] 7.46 5.24 8.16 2.84 3.18 3.65
[6] 7.45 5.55 7.33 2.73 3.25 4.19
[4] 8.25 6.34 8.57 2.56 3.05 5.15

Proposed 7.20 5.31 8.89 2.51 3.22 2.12
BARBARA

PSNR 23.33 23.26 22.49 24.21 23.77 29.77
[2] 3.76 1.99 3.98 0.9 0.92 2.55
[6] 6.85 3.80 5.07 1.94 1.36 5.27
[4] 5.73 3.01 4.88 1.58 0.91 4.04

Proposed 6.24 3.83 5.08 1.22 1.03 3.72

Table 1. Performance comparison in terms of increase of the
Signal-to-Noise ratio, in dB. First row shows the blurring ker-
nel used, and the second the noise standard deviation. Best
results are shown in bold, and second best in italic.

numerically using the Peak Signal-to-Noise Ratio (PSNR),
defined as 10 · log10(2552/MSE) with MSE the mean
square error. We compare the performance of the proposed
method with the algorithms proposed in [2], [8], [6] and [4],
which represent the current state-of-the-art in wavelet-based
image restoration. Table 1 shows the increase in PSNR values
obtained by all algorithms for a number of noise levels and
with different PSFs. PSF1 is hi,j = (1 + i2 + j2)−1, for
i, j = −7, ..., 7; PSF2 is a 9 × 9 uniform kernel; PSF3 is
a 5 × 5 separable kernel with coefficients [1, 4, 6, 4, 1]/16;
PSF4 and PSF5 are Gaussian kernels with standard deviations
1.6 and 0.4. The values for the noise standard deviation are
shown in the second row. Finally, the first row for each image
shows the PSNR values of the observed images.
From Table 1, note that our method outperforms simulta-

neously the four methods we have compared with in 5 out of
the 18 tests. Also, it is the best in most cases among global
ones, which minimize non-convex norms (≈ 0.7) of synthesis
coefficients ([8, 2]). When using a more textured image, such
as Barbara, the performance of the proposed method is com-
parably better, mainly because our method is very well fitted
to preserve sharp edges.
Figure 1 shows a visual comparison of the results for the

House image among the methods in Table 1 for the severely
blurred case (PSF2). It can be observed that, compared to the
other methods, the image restored by the proposed method
exhibits almost no artifacts, even around the edges, thus pro-

Fig. 1. Visual comparison of the various methods. From top
to bottom and from left to right: 80× 80 crop of House start-
ing at (78,1); degraded with PSF2 and σn =

√
0.308 (PSNR

= 24.11 dB); result by [6] (PSNR = 33.15 dB); result by [2]
(PSNR = 34.82 dB); result by [4] (PSNR = 34.82 dB); pro-
posed method (PSNR = 34.91 dB).

viding a very high visual quality. It is also important to point
out that we have seen this absence of visual artifacts in the re-
sults of our method in all the experiments we have performed,
and that it is in part due to the combined use of two wavelet
representations. Another example is shown in Figure 2. Note
that the proposed method achieves a better reconstruction of
the stripes than the rest of the methods, including [6], which
provides a slightly higher PSNR due to local adaptivity.

6. CONCLUSIONS

We have proposed an image restoration method based on a
MAP approach with a prior on the compressibility of the lin-
ear response of overcomplete wavelets to natural images. We
have derived an efficient method providing local optima to
the resulting non-convex cost function. Our method performs
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Fig. 2. Visual comparison of the various methods. From top
to bottom and from left to right: 80 × 80 crop of Barbara
starting at (221,1); degraded with PSF1 and σn =

√
2 (PSNR

= 23.33 dB); result by [6] (PSNR = 30.18 dB); result by [2]
(PSNR = 27.09 dB); result by [4] (PSNR = 29.06 dB); pro-
posed method (PSNR = 29.57 dB).

comparably to state-of-the-art wavelet-based methods, both
visually and in terms of PSNR. Particularly, it clearly outper-
forms other iterative global methods. Future work includes
estimation of the optimal algorithmic parameters and incor-
poration of local adaptivity for better texture recovery.
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