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Abstract— Compressive sensing (CS) MRI aims to accurately
reconstruct images from undersampled k-space data. Most
CS methods employ analytical sparsifying transforms such
as total-variation and wavelets to model the unknown image
and constrain the solution space during reconstruction. Re-
cently, nonparametric dictionary-based methods for CS-MRI
reconstruction have shown significant improvements over the
classical methods. These existing techniques focus on learning
the representation basis for the unknown image for a synthesis-
based reconstruction. In this paper, we present a new frame-
work for analysis-based reconstruction, where the sparsifying
transform is learnt from a reference image to capture the
anatomical structure of unknown image, and is used to guide the
reconstruction process. We demonstrate with experimental data
the high performance of the proposed approach over traditional
methods.

I. INTRODUCTION
The emerging theory of compressive sensing (CS) has

created significant interest in magnetic resonance imaging
(MRI), as it offers a robust and systematic framework for
increasing the imaging speed which is inherently low in MRI.
This slow acquisition is prohibitive in many important clin-
ical applications, especially in dynamic and interventional
imaging, where near real-time acquisition speeds are desired.
Despite the advances in imaging hardware, the acquisition
speed is limited by MR physics and prohibitive in many
applications.

Compressive sensing provides a systematic methodology
to recover images from a significantly smaller number of
measurements than that required by Nyquist sampling. The
underlying principle to make this possible is the sparsity
of the images in some transform domain. An extensive
body of work investigated a number of different sparsifying
transforms that exploit the image characteristics for accurate
reconstruction. Classical approaches consider non-adaptive,
analytical transforms such as wavelets, total-variation, and
contourlets [1], [2]. More recently, adaptive transforms (or
dictionaries) have become increasingly popular as they can
more accurately capture characteristics of the images of
interest in a particular application. Early work in this area
focused on analytical derivation of parametric bases [3],
whereas more recently, nonparametric dictionary learning has
been developed and applied to many problems in imaging

S. D. Babacan, M. N. Do and Z.-P. Liang are with the Beckman Institute
for Advanced Science and Technology and the Department of Electrical and
Computer Engineering, University of Illinois at Urbana-Champaign, Urbana,
IL, USA. e-mail: dbabacan@illinois.edu

X. Peng and X.-P. Wang are with the School of Electronic Information,
Wuhan University, Wuhan, China. X. Peng is now a visiting scholar at
the Beckman Institute for Advanced Science and Technology, University of
Illinois at Urbana-Champaign.

[4]–[7]. The work in [8] proposed reference-guided weights
to analytical transforms during reconstruction.

Most of the work in dictionary-based recovery utilizes
learning a dictionary from a collection of precollected ref-
erence images. The trained dictionary is then used as the
sparse representation basis for the image, and which is
then employed in a synthesis-based reconstruction algorithm
typically minimizing the lp-norm (0 ≤ p ≤ 1) of the
representation coefficients. The work [9] also proposed joint
dictionary learning and sparse reconstruction which showed
significant improvements over existing methods.

The main principle behind these methods is to constrain
the characteristics of the reconstructed image to certain
anatomical structures, rather than blindly and uniformly
enforcing local smoothness as in traditional methods. The
morphology of the subject of interest is generally known to
an high extent, which provides valuable information to guide
the reconstruction process. In this paper, we propose a novel
algorithm based on the same principle. However, rather than
constraining the representation basis, an adaptive sparsifying
transform is learnt from a reference image and used in
an analysis-based reconstruction. This transform is essen-
tially spatially-varying high-pass filters which enforce local
anatomical structure (learnt from a reference image) during
reconstruction. We demonstrate with experimental results
that the proposed method is very effective for compressive
sensing MRI reconstruction while maintaining robustness.

The rest of this paper is organized as follows. The pro-
posed formulation is described in Section II. Experimental
validation of the approach is done in Section III, followed
by concluding remarks in Section IV.

II. PROPOSED FORMULATION
The goal in compressive sensing MRI is to reconstruct the

unknown image ρ ∈ Cp from limited k-space measurements
d ∈ Cm with m � p. The imaging system is commonly
modeled as

d = Fuρ + n, (1)

where Fu ∈ Cmxp is the undersampled Fourier encoding
matrix, and n is the observation noise. Typical formulations
of the CS reconstruction problem use either the analysis-
based regularization as [10]

ρ̂ = argmin
ρ

‖ d− Fuρ ‖22 +λR (Ψρ) , (2)

or, synthesis-based sparse reconstruction using

α̂ = argmin
α

‖ d− FuΦα ‖22 +λR (α) , (3)



and setting ρ̂ = Φα̂. The parameter λ controls the strength
of the regularization. In both cases, the regularization func-
tional R(·) is generally a variant of the lp-norm with 0 ≤
p ≤ 1, which is known to enforce sparsity in the solu-
tions. Although the difference between the two approaches
might appear to be subtle, they deviate significantly both
in terms of modeling and algorithm development [10]. The
analysis-based algorithms are common in many inverse prob-
lems; algorithms based on total-variation, and x-let (wavelet,
curvelet, etc.) forward (or analysing) transforms for Ψ, fall
into this category. The synthesis-based approach is relatively
more recent, and it is based on the assumption that the signal
ρ can be represented as a linear combination of columns of
Φ, and this representation α is sparse.

In both approaches, the transforms Φ and Ψ are chosen
traditionally as data-independent, i.e., analytical transforms
with certain desirable properties such as fast evaluation
and inversion. The development of data-dependent, nonpara-
metric dictionaries showed considerable improvement over
analytical ones due to better and more specific modeling
of image classes [3]–[7]. As the synthesis-based approach
is constructive, and therefore more intuitive for modeling,
all dictionary learning approaches are developed using this
approach. To our knowledge, dictionary learning based on the
analysis approach is not investigated, although analysis-based
optimization is easier to develop and solve. Our proposal
in this work is to develop such an approach for reference-
guided reconstruction of MR images from undersampled k-
space measurements.

The most important property in designing the analysing
transform Ψ is its sparsifying ability, i.e., a good transform
should produce highly sparse coefficients such that imposing
R (Ψρ) significantly constrains the solution space of ρ.
The transform Ψ should accurately capture the local spatial
activity of image ρ, and in the ideal case, its application to
the image will result in uncorrelated noise.

Analytical analysis operators such as total variation and
wavelets impose sparseness on all preselected filters. For
instance, total-variation suppresses finite differences in both
horizontal and vertical directions in the whole image do-
main. However, if prior knowledge on the edge structure is
available, the suppression of image variation can employ this
information and follow the edge structure, which in turn will
result in higher sparsity levels.

In most MRI applications, a reference fully-sampled image
ρref can be obtained to extract the local anatomical structure
within the image. This information can be effectively used to
adaptively design filters to impose the learnt local anatomical
structure during the reconstruction process.

Based on this, we define the analysis operator as spatially-
varying high-pass filters defined at each pixel location r:1

Ψ(r)=δ(r)− 1

Kr

∑
s∈N (r)
s6=r

δ(s)f (r, s) g
(
ρrefr , ρrefs

)
, (4)

1Note that the rth row of the operator Ψ defines a filter for a particular
location r.
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Fig. 1. (a) Original image, and (b) reference image taken from a diffusion
MR experiment. Both images are normalized to unit maximum intensity.
The magnitudes of the coefficients of the output of the filters learnt from
the reference image are shown in (c), and the magnitudes of horizontal
gradients in the original image are shown in (d).

where δ(r) is the delta function, N (r) defines a rectangular
neighborhood around pixel r, and Kr is the normalization
factor. The filter Ψ(r) consists of two parts: A spatially
invariant filter f(r, s), used to weigh closer pixels higher than
pixels far apart; and a spatially-varying filter g

(
ρrefr , ρrefs

)
,

computed using the local spatial variations in the refer-
ence image. Conceptually, g

(
ρrefr , ρrefs

)
must assign larger

weights to pixels with similar intensity values, such that
the filtering is performed along the edges, and filtering
across edges is suppressed. Based on this, we define g(·)
to be a function of the radiometric distance between pixels
r and s, such that g

(
ρrefr , ρrefs

)
= g

(
|ρrefr − ρrefs |

)
. Any

monotonically decreasing function can be used for g(·); in
this work, we use the absolute differences such that

g
(
ρrefr , ρrefs

)
=

1

|ρrefr − ρrefs + ε|
, (5)

where ε is a small number which accounts for the observation
noise in the reference image, and for possible anatomical
discrepancies between the reference and unknown images.

As an example of how much structural information can be
obtained using the proposed analysis operator, consider the
image pair in Fig. 1, extracted from a dynamic MR sequence.
We have constructed the filter Ψ using the reference shown
in Fig. 1(b) and applied it to the image in Fig. 1(a). The
reference and original images have different local and global
contrast, and they have different structure around the sculp.
The magnitudes of the coefficients at the filter output is
shown in Fig. 1(c). For comparison, the absolute values of
the horizontal differences are shown in Fig. 1(d). Notice
that the proposed filter produces a much sparser output, and
captures the characteristics of the image to a greater extent.



In addition, the filtered image have noise-like characteristics,
and hence much of the anatomical structure is captured by
the proposed filter, whereas the horizontal gradients exhibit
significant image structure, as expected.

Using the reference-guided analysis transform described
above, the reconstruction of the image ρ can be performed
using the classical optimization shown in (2). Employing the
standard l1-minimization formulation, (2) becomes

ρ̂ = argmin
ρ

‖ d− Fuρ ‖22 + λ ‖ Ψρ ‖1 , (6)

which can be solved using a number of existing methods.
Here we use the reweighted least squares method as a refer-
ence method to compare the proposed design with traditional
algorithms.

III. RESULTS AND DISCUSSION
A. Simulation Results

The proposed method has been evaluated systematically
using different reference images with varying degrees of sim-
ilarity to the original image. To demonstrate the advantage of
the method, we include comparisons with two methods; the
traditional TV-based CS reconstruction [1], and an l1-based
algorithm that solves

ρ̂ = argmin
ρ

‖ d− Fuρ ‖22 + λ ‖ ρ− ρref ‖1 . (7)

This method uses the reference image directly in the re-
construction as an additional constraint. In all algorithms,
the algorithmic parameters are optimized in each case as to
represent their best reconstruction results.

The unknown target image is chosen from a time series dy-
namic MRI experiment, and is shown in Fig. 1(a). A variable
density sampling pattern is used to acquire undersampled
k-space data at various undersampling ratios. We test the
proposed approach with three different reference images:
the target image, which is used to provide an “oracle”
performance bound; the target image corrupted with additive
Gaussian noise of variance 0.01; and another frame from
the same dynamic MR sequence, shown in Fig. 1(b). The
noisy target image as the reference is used to assess the
robustness of the proposed method to noise in the reference.
As mentioned above, the reference image in Fig. 1(b) con-
tains the general anatomical structure, but it has different
local intensity variations and observation noise. Therefore, it
represents a realistic reference image that can be acquired in
many applications.

As the quantitative quality measure we use the relative
error, defined by ‖ρ̂−ρ‖2‖ρ‖2 , where ρ is the original image, and
ρ̂ is the reconstructed image, respectively. Figure 2 shows
the performance of the algorithms with different reference
images and different undersampling ratios. The proposed
algorithm is denoted with preceding P-, and the formulation
in (7) is denoted with preceding l1−, with different reference
images. Reconstructed images at undersampling factors of
15% and 25% are shown in Fig. 3 and Fig. 4, respectively.

Several important remarks can be made from the results.
First, the proposed approach provides better reconstruction
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Fig. 2. Relative reconstruction error vs. sampling percentage for all
algorithms with different reference images.

performance at all undersampling factors and with all refer-
ence images. Second, while the performance of the approach
degrades when reference images with lower similarity are
used, this degradation is not severe (around 2-3%), and the
method provides performance close to the oracle bound.
It can be stated that if the reference image contains the
general anatomical structure (albeit degraded), the proposed
approach is able to exploit this information to an high
extent during reconstruction. On the contrary, the l1-based
reconstruction using the reference image is highly prone
to the noise in the reference image, and the relative re-
construction error is mostly determined by the noise in the
reference image. In addition, when an image with different
contrast characteristics is used, its performance decreases
significantly and becomes close to the TV reconstruction.
Finally, the TV-reconstruction is not able to provide accurate
reconstructions; the reconstructed images either exhibit large
aliasing artifacts or oversmoothing.

B. Discussion

The proposed method can be employed for a variety
of imaging applications where reference images can be
collected that contain the anatomical structure. Potential such
applications include interventional MRI, diffusion-weighted
MRI, and MR spectroscopy imaging. To more effectively
utilize the proposed approach, a variety of experiments (e.g.,
with different contrast weightings or diffusion tensor imag-
ing) can be performed to acquire additional information for
the design of the analysis transform (see a related discussion
in [8]).

In cases where the expected similarity between the target
and reference images can be estimated, this knowledge can
be incorporated in the transform design using the filter
parameters (such as ε in (5)). The parameter can be adjusted
to obtain more robustness to discrepancies between the target
and reference images. In addition, similar to the method in
[9], the filters learnt from the reference image can be adapted
using the reconstructed images during the iterative procedure.
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Fig. 3. Reconstructed images at 15% sampling ratio. Top row: Proposed
method, middle row: l1-based method using (7), bottom row: TV recon-
struction. (a,c) is obtained with the noisy target image as the reference, and
(b,d) is obtained with the image in Fig. 1(b) as the reference.

These approaches will be considered in future work. Finally,
although the focus of this work is compressive sensing
reconstruction, the proposed construction of the analysis
operator can also be used for other recovery applications,
such as denoising and motion artifact removal.

IV. CONCLUSIONS

We presented a novel method for compressive sensing
MRI based on the design of reference-guided analysis trans-
forms. We have demonstrated that this formulation achieves
a high degree of sparsity and is able to capture and enforce
the salient anatomical structure during the reconstruction
process. The proposed method has shown to provide higher
reconstruction performance compared to methods using ana-
lytical transforms and to methods using the reference images
directly as constraints.
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