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Abstract

Recovery of low-rank matrices has recently seen signifieativity in many areas of science and engineering,
motivated by recent theoretical results for exact recosizn guarantees and interesting practical applications
In this paper, we present novel recovery algorithms forneating low-rank matrices in matrix completion and
robust principal component analysis based on sparse Baydésarning (SBL) principles. Starting from a matrix
factorization formulation and enforcing the low-rank cwast in the estimates as a sparsity constraint, we develop
an approach that is very effective in determining the carrank while providing high recovery performance. We
provide connections with existing methods in other simpanblems and empirical results and comparisons with
current state-of-the-art methods that illustrate theotiffeness of this approach.

. INTRODUCTION

Recently, there has been a significant interest in problemd\ing the estimation of low-rank matrices. This
is motivated by recent theoretical advances [1]-[4], ad aglinteresting practical problems where the underlying
data resides in a low-dimensional linear subspace. Incatipg a low-rank constraint on the data to be processed
leads to new and powerful modeling options for many appboatin science and engineering.

A typical example is thematrix completionproblem, where an unknown (approximately) low-rank matsix
estimated from its limited set of observed entries. Althotlgs problem is not new [5], interesting and challenging
problems (e.g., théetflix priz§ along with recently developed theoretical recovery gotees [1], [2] created a
rapidly growing interest in this area. Matrix completiondgapplication in many areas of engineering, including
system identification [6], sensor networks [7], machinenégy [8], computer vision [9], [10], and medical imaging
[11].

A second important problem i®bust principal component analysiRPCA), where the high dimensional data is
assumed to lie in a lower dimensional subspace with a smaibeu of the data points corrupted with (arbitrarily)
large errors. Widely used classical methods, such as pahdomponent analysis (PCA), often fail to provide
meaningful results in these cases. Some earlier methoels@Ettto overcome these issues using robust statistics
[12]-[17]. Recently, theoretical performance guaranteesRPCA have been developed in [3], where it is shown
that a data matrix can be decomposed into its low-rank antsepaomponents via convex optimization. Robust
PCA has many important applications, such as video suavei# (background/foreground separation in video), face
recognition [18], latent semantic indexing [19], imagegalent [20], among many others.

Mathematically, problems involving the estimation of loank matrices can be formulated in a common frame-
work as follows. LetX € R™*™ pe an unknown matrix with rank < min(m,n). Suppose that one is given an
observation matrixyY which is a functionf(X) of X. In matrix completion, the observation is a subSeof its
entries, that is{Y;; = X;; : (z,7) € Q}. In other words, the observatidv is a projectionPy of X on a subsef2
of its entries, such that th@, 7)™ component ofY is equal toX;; if (i,7) € Q2 and zero otherwise. In RPCA, the
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observation can be expressed¥is= X + E, whereE is a sparse error matrix where only a very small number
of coefficients are non-zero with (arbitrarily) large magdes.
In both cases, most matrices can be recovered by solvingffine aank minimization problem[1]-[4]

minimize rank(X) (1)
subjectto Y = f(X).

Although this optimization guarantees exact recoveryXotinder a set of conditions [1], [3], it is NP-hard and
no known polynomial-time algorithms exist (analogous te xnorm based recovery approaches in compressive
sensing). A popular approach is to utilize convex relaxabased on the nuclear norm, given by

minimize || X]|. )
subject to Y = f(X),

where || X||. is equal to the sum of the singular valuesXf Under some conditions the solutions of these two
problems coincide and recovery guarantees exist (seexénge, [1], [3], [21]). Subsequent works [2], [22], [23]
improved on the theoretical recovery guarantees for theixnedmpletion problem.

If the observed entries are corrupted by dense (non-spacisd, the problem in (2) becomes

minimize || X[, (3)
subjectto | Y — f(X) [E <,

where| - ||r denotes the Frobenius norm. Both nuclear norm based optiimiz problems in (2) and (3) can be
recast as a semidefinite program, and can be solved withidrfesint solvers [6], [24]. Although they provide
good empirical results, these methods can be inefficiennhwhe matrix size is large.

A number of methods have been developed consequently fierafit problems involving low-rank estimation.
For matrix completion, singular value thresholding [25daorojection methods [26] are attractive in terms of
computation, while they nearly optimize (2). FPCA [27] oduced an efficient nuclear norm-based regularized
least-squares method, whereas OPTSPACE [22] developedteodnbased on optimization over the Grasmann
manifold with a theoretical performance guarantee for thiseless case. Similarly to the approaches for compressive
sensing recovery, greedy approaches have been proposetafix completion [28]. Finally, Bayesian methods
have also been developed [29]-[34]: a nonparametric apprima symmetric positive definite matrices is proposed
in [29], and a variational Bayes method is developed foratmitative filtering in [31]. The method in [32] is based
on beta-Bernoulli processes for modeling and Gibbs samitin inference.

For robust PCA, the original work in [3] proposed iteratieesholding methods with low complexity, but
their convergence is generally very slow. Lén al. [35] proposed accelerated proximal gradient (APG) methods
which are faster and generally more accurate. The augmésmtgehnge Multiplier Method (ALM) [36] is, to the
best of our knowledge, the state-of-the-art method for sblRCA in terms of both speed and accuracy. However,
algorithm parameters need to be tuned carefully to obtarbest performance. The Bayesian method proposed in
[37] addresses this issue by simultaneously estimatingn@oessary parameters along with the unknowns, but the
resulting algorithm uses sampling for inference and hak bigmputational complexity.

In this paper, we present a novel Bayesian formulation fev-lank matrix recovery based on the sparse
Bayesian learning principles. We specifically considemttatrix completion and robust principal component analysis
problems, but the proposed framework can be translatechi&r groblems involving low-rank structures. Based on
the low-rank factorization of the unknown matrix, we emploglependent sparsity priors on the individual factors
with a common sparsity profile which favors low-rank solago Other elements in the problems are also modeled
using a hierarchical Bayesian framework for simultaneaus automated estimation.

The proposed Bayesian formulation offers several advastager deterministic approaches. Firstly, prior knowl-
edge on the rank of the matrix is not required; the proposeddtation implicitly estimates the rank of the unknown
matrix similarly to the automatic relevance determinatmimciple in machine learning [38]. This property is not
present in most of the existing deterministic approachesofd, algorithmic parameters are treated as stochastic
guantities in the proposed approach, and are handled wathambination of prior distributions and fully-Bayesian
inference procedures. In this regard, this type of formaoatrees the user from extensive parameter-tuning and data

A sparsity term is also incorporated in the objective fumttin the robust PCA case, which is omitted here for gengralit



and application-dependent supervision. Finally, emairiesults demonstrate that the proposed methods provide
very good reconstruction performance compared to existieghods while accurately estimating the unknown
effective rank.

This work is closely related to some probabilistic formidas in collaborative filtering [31], [39] and nonnegative
matrix factorization [40], regarding the modeling of thekaown low-rank components. The works [31], [39] are
variational Bayesian approaches to matrix completion, revtilee low-rank matrix is modeled via two factors and
two sets of independent hyperparameters. On the other dBijdproposed to relate these factors by a single set
of hyperparameters, and a maximwnposterioriapproach is used for inference. One of the main contribation
of this work is to combine the modeling approaches in thesksvto obtain an intuitive modeling structure, and
to provide a variational algorithm using this modeling whienders heuristic measures unnecessary and enables
fully-automated estimation without free parameters. Arotcontribution of this work is to extend the application
of this low-rank modeling to the robust PCA problem by indhgladditional hierarchical modeling for the sparse
errors with arbitrarily large coefficients. The relationthwviprior art is discussed in more detail later in this paper
(Section IV-A).

The rest of this paper is organized as follows. We presentriigosed Bayesian modeling in Section II. Section Il
develops the estimation algorithms based on variationgéB8an inference. We present an analysis of the proposed
approach in Section IV and empirical results with syntheticl real data in Section V, and finally conclude in
Section VI.

[I. BAYESIAN MODELING

In order to simultaneously estimate all latent variables,make use of a hierarchical Bayesian framework where
all observed and unknown quantities are treated as staclasintities and their joint probability distribution is
specified. For tractable mathematical modeling, this ithistion is given in a factorized form using a generative
model where each factor is a prior or a conditional distidutused to model a specific quantity. We provide the
description of each distribution used in this work in thddaling sections.

A. Proposed Low-Rank Modeling
Our modeling is based on the low-rank parametrization ofuthienown matrixX, given by
X = AB7T, (4)

where A is anm x r matrix, andB ann x r matrix, such thatank(X) = r < min(m,n). Any matrix of rankr
can be decomposed in this form, as can be seen by considbeargjrigular value decomposition

X = USV? = (USW) (sl/2vT> : (5)

whereU andV are respectivelyn x r andn x » matrices with orthogonal columns, adis ar x r diagonal
matrix of the non-zero singular values. Algorithms basedhis factorization are commonly used for nonnegative
matrix factorization [41] and matrix completion [42], whigenerally aim to find solutions to

minimize || A |z + | B |3 ©)
subjectto | Y — f(X) |2< e
The equivalence of this optimization problem to (3) can bewsh (see [21]). We formulate the problem in (6)

using the Bayesian methodology as follows. It is clear film= AB” that X is the sum of outer-products of the
columns ofA andB, that is,

k
X=> ab,", (7)
i=1

wherek > r and we usen.; anda;. to denote the'® column and row ofA, respectively. Notice that each outer-
product contributes at most one to the rankXoSince a low-rank estimate & is sought, our goal is to achieve



column sparsity inA andB, such that most columns iA and inB are set equal to zero. To enforce this constraint,
we associate the columns &f and B with Gaussian priors of precisions (inverse varianegs}hat is,

p(Aly) = HN 20,7 'L . ®)

p(Bly) = HNb\o,% n) )

whereI,, denotes then x m identity matrix. Thus, the columns oA and B have the same sparsity profile
enforced by the common precisions As shown later, many of the precisions will assume very large values
during inference, which effectively removes the correspiog outer-products fronX, and hence reduces the rank
of the estimate. This formulation is therefore the analogmdrse Bayesian learning formulation (or automatic
relevance determination) [38], [43] successfully utitizBor compressive sensing reconstruction, where sparsity-
inducing Gaussian priors are employed on each of the caafificiof the unknown vector.
In addition to (8) and (9), we incorporate the conjugate Gantnyperprior on the precisiong
p(v:) = Gamma(a, E

7)o exp (<bi) - (10)

The parameters and b are treated as deterministic whose values are set to sniaks/ée.g.,10~°) to obtain
broad hyperpriors.

B. Observation and Noise Models

In this work, the prior structure in (8), (9) and (10) is usedaacommon low-rank matrix model f&X in the
matrix completion and robust PCA problems. The descrigtiohthe distributions used to model other latent and
observed variables are provided in the following sections.

1) Matrix Completion:In matrix completion, the observations are generated daogito

Yij = Xij + Nij, (4,5) € Q, (11)
or in a more compact form as
Y =Pq(X+N), (12)

whereN is the dense error matrix with coefficiem§;. The cardinality of the se&® is pmn, with p the fraction of
observed coefficients. Using this model, we follow the staddassumption and incorporate white Gaussian noise
in the observations, such that

p(YIAB,B) = [[ N(ViylXi,87"), (13)

(4,7)€Q

with 5 = 1/e the noise precision. The noise precisiéns assigned the noninformative Jeffrey’s prior

p(B) =p"". (14)

The joint distribution, therefore, is expressed as

p(Y,A,B,v,8) = p(Y|A,B, 3) p(Aly) p(B|v)p(v) p(B) - (15)



2) Robust PCA:In this case, the generative model can be expressé&fi-asX + E + N, whereE is the sparse
error matrix with arbitrarily large coefficients, aid is the dense error matrix with relatively smaller coeffi¢gen
Using white Gaussian noise modeling D we obtain the following conditional distribution for théservations

p(Y|A,B,E,8) = N (Y|AB” + E,37'1,,,,,)
o exp <§ |Y -ABT —E H%) . (16)

As in the matrix completion case, we assign the Jeffreysrpn (14) to 3. The modeling of the sparse component
E is done by employing independent Gaussian priors on eacheotaefficientst;; of the matrixE, that is,

p(Ele) = [TV (Eulo.05!) . (17)

i=1j=1

wherea = {«;;} anda;; is the precision of the Gaussian on thiej)*® coefficient. As with the noise precision,
we use Jeffrey’s priors on;

Notice that when an individual precision goes to infinity,.,iozi‘j1 — 0, the corresponding coefficiertf;; goes to
zero. Hence, the sparsity B is achieved when a large number of precision variables dréodeigh values. As
in the original formulation of sparse Bayesian learnings th achieved in this work by simultaneously estimating
the coefficientst;; and the precision variables;;, as shown later.

Finally, the joint distribution is expressed as

p(Ya A, B E, v, a, B) - p(Y’A, B,E, /8) p(Ah/) p(B"Y)
x p(Ela)p(y) p(a) p(B)- (19)

I1l. A PPROXIMATE BAYESIAN INFERENCE

As is widely known, exact full-Bayesian inference usingnjodistributions such as (15) and (19) is intractable,
sincep(y) cannot be computed by marginalizing all latent variabldser&fore, approximation methods must be
utilized. Common approximations include maximwposteriori(MAP) estimation, evidence-based analysis and
variational Bayes. Although all of these methods can onlyvigle local minima, Bayesian inference (where at
least one variable is integrated out) is generally morectife in avoiding undesired local minima compared to
deterministic methods such as MAP. This is mainly due to #wt fthat Bayesian methods approximate the full
posterior distributions instead of providing point-esdies of its modes. Although in theory sampling methods
can provide the optimal approximation to the posteriore, tbmputational complexity is significantly higher for
high-dimensional data than that of other methods, and cgewee is generally hard to assess.

In this work, we present an inference procedure based on relanvariational Bayes [44], [45]. Our goal
is to compute posterior distribution approximations by imizing the Kullback-Leibler (KL) divergence in an
alternating fashion for each latent variable. lzebe the vector of all latent variables such that (A, B,~, )
for the matrix completion case, and= (A, B, E,~, «, ) for robust PCA. The posterior approximatia(zy) of
each latent variable; € z is found using

log q(z) = (log p(Y, z))z\Zk -+ const, (20)

wherez\z; denotes the set with z; removed. The distributiop(Y,z) is the joint probability distribution given
in (15) for the matrix completion problem, and in (19) for usb PCA.

Using mean field approximation, we employ the posteriordazationq(z) = [ q(zx) such that the posterior
distribution of each unknown is estimated by holding theeadhfixed using their most recent distributions. Thus,
for each latent variable, the expectations of all paramsg@xcluding the current one) in the joint distribution are
taken with respect to their most recent distributions, dmresult is normalized to find the approximate posterior
distribution. Since all distributions in the hierarchicabdel presented in the previous section are in the conjugate
exponential family, the form of each posterior approximatcan be found without major difficulties. We present
the update rules resulting from this inference scheme foh gaoblem in the following subsections.



A. Inference for Matrix Completion

1) Estimation of factorsA and B: With some algebra, it follows from (20) that the approxiroatito the
posterior distributions oA and B decompose as independent distributions of their rows. Bybioing the prior
in (8) and the observation model in (13), the posterior dgrsfithe it" row a;. of A is found as

q(a;.) = N (a;[(a;.), 57) , (21)
with mean and covariance
(a:)" = (8) 27 (Bi) yi.", (22)
3¢ = ((8) (BTBy) +T) ", 23)
where the matrixB; contains only thej*® rows of B for which (4, 5) € ©, such that,
BIB)= Y (b b= Y ((by7)(by)+=) (24)
J:(i,5)EQ j:(4,5)EQ

with E? the posterior covariance of th&" row of B. Additionally, the row vector;. contains the observed entries
in the +*® row of Y. Similarly, by combining the prior in (9) and the observatimodel in (13), the posterior
density of thej*" row b,. of B is found as a normal distribution

a(bs) = N (by|(b;). =) (25)

with parameters
(bj)" = (8) 35 (A)" v, (26)
=)= ((8) (ATA) +T) (27)

where A; contains thei® rows of A for which (i, j) € Q, and the vectoly.; is constructed from the observed
entries in thej'" column of Y. It can be observed that the covarian&%sof the estimate oB are incorporated
in the estimation ofA (and vice versa).

2) Estimation of hyperparameterg. By combiningp(A|v), p(B|y) and p(v;), the posterior density ofy;
becomes a Gamma distribution

a() o1 exp <—% S <a'iTa'i2> * <b'in'i>> (28)
with mean
i) = ot <a2aT:T>n ++ <Z.in.i> ' (29)
The required expectations are given by
(ai"aq) = (@) (@) + Y (29),,, (30)
j
(31)

(b."bs) = (b) (ba) + > ()
J

3) Estimation of noise precisiofi. The Bayesian methodology allows for the estimation of thisenprecision

as well. From (20), the posterior approximation assumes rarza distribution with mean
pmn
(B) = :
('Y = Pq (ABT) || )

In summary, the algorithm proceeds by first estimating ttvesrof A and B using (22) and (26), respectively,

followed by the estimation of the precisions using (29), and (if desired) the noise precisigrusing (32). By

the properties of the variational Bayes methods, the dlyoris guaranteed to converge to a local minimum of the
variational bound [45].

(32)



B. Inference for Robust PCA

1) Estimation of factorsA and B: The approximations to the posterior distributions Aofand B take forms
similar to (21) and (25) with the same factorization over tbws of A and B, respectively. However, as opposed
to the matrix completion case, the covarian&&s of the rows of A are equal since there are no missing values
(the same applies tB). The posterior approximation of th&" row of A is given by

q(ai-) =N (ai'|<ai->>2A) ) (33)
with mean and covariance
(@) = (B2 B) (yi—e)", (34)
4 = ((8)(B"B) +T) . (35)
Similarly, the posterior approximation &f;. is another multivariate normal distribution given by
a(b;.) =N (bj |(b; ), 5") (36)
with parameters
()" = ()P (A)" (v —ey) , (37)
%8 = ((8) (ATA) +T) . (38)
The required expectations can be found as
(ATA) = (A)T(A) + mZ, (39)
(B'B) = (B)'(B) + nx?. (40)

Using these updates, the estimateXofis then found byX = (A)(B)7
2) Estimation ofE: Using (20), the posterior distribution approximationkfis found to be factorized on each
coefficient£;; with distributions

q(Eij) = N (E4l(Eij), 2F) (41)
with parameters
(Eig) = (8) SE (Vi — (ai)(by)") | (42)
B 1
5= B+ (ay) “
Notice that (42) can be rewritten as
__®) e\ b
(Eij) = B+ (o) (Yz - <az-><by->T) ; (44)

where the first term is at modt and hence this estimation @;; corresponds to a shrinkage of the difference
between the observations and the low-rank estimates diewctiny the noise precisiofi and the hyperparameters;.
When a specific hyperparameter goes to infinity, tha(d@)‘1 — 0, the mean and variance of the corresponding
coefficient;; become zero, resulting in sparse estimatef of

3) Estimation of hyperparameters Similarly to the above, the posterior density ®fis found as a Gamma
distribution with mean given in (29). The only differenceiristhe calculation of the expectations, which are given
by
(45)
(46)

4) Estimation of hyperparametets. The posterior density of hyperarameters is found as a Gamma distri-
bution with mean

(a;Ta;) = (a) (a;) +m (ZA)W
(b Tb) = (b)) (b)) +n (BF). .

K23

1

<Eij>2 + EiEj ' 47

(ayj) =



5) Estimation of noise precisioft Finally, the posterior approximation of the noise pregisiesumes a Gamma
distribution with mean

P =Y —ABT-BZ) (48)
where
(| Y-ABT"—E|}) =Y - (A)B)" —(E) |}
+Tr (n(A)(A)ZF) + Tr (m (B) (B) 54
—|—Tr(ngAZB)—|—§:zn:EZ—Ej. (49)

i=1 j=1

In summary, the proposed algorithm estimates the low rankpomentX by estimating its factors using (34) and
(37), followed by the estimation of the sparse mafiusing (42), and finally the estimation of all hyperparanmster
using (29), (47) and (48), until convergence.

IV. DISCUSSION
A. Related Prior Art

The methodology presented in this work is closely relatesoime methods developed for collaborative filtering,
probabilistic principal component analysis (PCA) and (megative) matrix factorization. In collaborative filtegin
methods proposed in [31], [39], independent Gaussiangeog placed on the columns Af and B with separate
sets of variances, and a variational Bayesian analysis jgogeed for inference. Although these models are similar
to our approach, the columns &f and B are not coupled through the use of common precisions as invortk.
Employing common parameters is of crucial importance inaéng redundant components from the estimated
matrix and determining the effective rank. In theory, thedelong in (8) and (9) with common precisions is used
to represent the correlation between the columnA dndB, and it also removes possible scale problems due to
the use of separate sets of precisions. To cope with sa@fabgues, [31] uses fixed, heuristically selected values
for one set, and estimates the other hyperparameter sellyf-in contrast to our work, [31] has reported that no
sparsity in the precisions occurs during the applicatiothefr algorithm.

The idea of coupling the columns & andB is also used in [40], which aims at solving the nonnegativeima
factorization problem. This work, however, employs noratg@ priors onA andB, and resorts to a multiplicative
MAP based estimation procedure for the sake of maintainimgnagativity. Note also that this method has not
been developed to handle the missing values as in the maimpletion problem, or the large sparse errors as
in the robust PCA problem. Some statistical approaches [16], [46] use heavy-tailed distributions for robust
estimation against outliers, but these do not include eipiodeling of sparse errors and hence cannot separate
these from dense errors.

The Bayesian PCA methods [47]-[49] also have some similamith our approach (with a different prior
structure); these methods can be seen as marginalizingdbrex/B out from the joint distribution and estimating
A only (or vice versa). Although a similar approach can be Wped in our formulation, i.e., marginalize one
matrix factor to estimate the other, estimation of the comrprecisionsy; becomes problematic sinck and B
cannot be integrated out together from the joint distrityuti

Finally, another Bayesian modeling and inference straisgyroposed in [37] for the robust PCA. The work
uses four distinct factors for the low-rank component, tWavbhich are modeled using Gaussian priors similar to
this work, and the remaining two is used to model the spargengalues of the low-rank matrix. Sparseness is
explicitly imposed using a beta-Bernoulli hierarchicaioprsuch that irrelevant components can be removed. This
is in contrast to our work and the approaches presented abneze the model does not lead to exact pruning, but
rather to a “soft” pruning (by driving components to valuesnerically indistinguishable from machine precision).
The sparse component is modeled in a similar fashion in [3#] & combination of a beta-Bernoulli and normal-
Gamma prior hierarchies. Due to the complex modeling, thetguimr distributions can only be inferred using
sampling strategies.



B. Estimating the effective rank

The proposed algorithm enforces low-rank solutions by mirig column sparsity iltA andB. During inference,
most of the hyperparameteysare driven to very large values, which will force the posterneans of the columns
to go to zero, effectively removing them from the model andung the rank. In our implementation, columns
of A and B were declared irrelevant at convergence if the corresmmﬁl assumes a very small value (e.g.,
10716),

C. Sparsity of the estimate &f

As discussed in Section 11I-B2, the update procedure (42hefcoefficientdy;; is in fact a shrinkage procedure,
where the amount of shrinkage is controlled by the estimaité®th the noise precisiofi and the hyperparameters
a;j. This resembles closely the automatic relevance detetimmia the original work of relevance vector machines
[38]. During the iterative procedure, many of the estimgteecisionsc;; will approach very high values, which
makes the corresponding posteriors in (41) very sharplkgmbat zero. In the limit ofy;; — oo, the posterior is
infinitely peaked at zero, leading to a zero estimate/9f) in (42). In our implementation, we prune the coefficients
E;; with large corresponding;; values (e.g.10'%) via thresholding, leading to a sparse estimat&ofn addition,
we can find another update rule from (47) as

(aij) ((Emz + 25) =1 (50)

()" (Eij)® + (0yg)?5E = 1 (51)
1— iy old EZE

(%’j)new = % ) (52)

which is a fixed-point update fa;;). We have also observed empirically that using these updasé=ad of (47)
leads to much faster convergence and enhanced sparditiglt no theoretical convergence guarantees exist. Note
that this update is also used in the original formulation mdrse Bayesian learning in [38].

D. Computational Complexity

While the proposed algorithms have demonstrated good &ralprerformance for a variety of matrix completion
and robust PCA problems, care must be taken when appliedde kcale problems. In matrix completion, the
computation of the inverse matrices in (23) and (27) can bt gxpensive; their computation &(k3), wherek
is the number of columns in eack; matrix (or the number of columns in ead) matrix). k& is also equal to the
estimated rank at each iteration. However, by constructizany rows ofA (B) are removed to obtaiiA; (B;),
such thatA; (B;) might possibly have fewer rows than columns. Eath has on the averagemn rows andk
columns (recalp is the fraction of observed entries to the matrix size witk 1). If pm < k, we can utilize the
Woodbury identity [50] to obtain a different form fd£2, given by

=T -T7YA)" ((ﬁ>_11k + (Aj>r_1<Aj>T> (AT (53)

which has the average-case complexityp® m?). In practice, we compare the number of columns and rows in
A; and B; at each iteration to automatically choose the least contplepdate. Overall, the complexity of the
algorithm isO(m-min(p*n3, k3)+n-min(p*m?, £%)). Empirically, however, we observed that convergence iglrap
most of the precisions assume very large values in the vesyifarations, and the norms of the corresponding
columns become numerically equal to zero, so that they caereved from the model (similarly to [38]). Other
optimizations can also be implemented such as using theigatg gradient method to solve for posterior means
in (22) and (26), and avoiding the computation of the offgdiaal terms of¥¢ and Zg’-. These optimizations
will lead to decreased computational complexity at the agpeof recovery performance. In the robust PCA case,
an analysis similar to the above (using similar identitiss(83)) gives an overall computational complexity of
O(min(n3, k%) + min(m?, k%)) per iteration. However, as in the matrix completion case, ¢ffective rank is
generally reduced rapidly in the first few iterations, thiere resulting in a very efficient inference scheme.
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to all figures.

E. Initialization

Although randomly initializing the matriceA andB generally provided satisfactory results, faster convecge
and better reconstruction performance can be achieved by marefully selecting the initial values. In our
implementations, we calculate the SVD of the mafiix= USVZ and setA = US: andB” = Sz V7. With
this choice, the algorithm is initialized with a (near) fudink matrixY. On the other hand, one can initialize the
algorithm with a lower rank estimate by removing columnsAofand B which correspond to small eigenvalues
of Y. Empirical results show negligible difference in perfompa if a reasonable initial rank (larger than the true
rank) is chosen, whereas the computational complexity easidnificantly reduced. Moreover, independently of the
initial rank, the algorithm successfully removes irreletvaomponents from the estimate and estimates the effective
rank accurately.

V. EMPIRICAL RESULTS

In this section, we provide experimental results for therim@&bmpletion and robust PCA problems with both syn-
thetically generated and real data sets. To examine theiealgerformance of the proposed method, we performed
experiments commonly used in the literature and compamegthposed methods to some existing algorithms. The
source code developed to obtain the results shown in thimearan be found dit t ps: // net fi |l es. ui uc. edu/ dbabac

A. Matrix Completion

Our first example illustrates the effectiveness of the psepoapproach on determining the correct rank. We
generated test matricés of size 500 x 500 of ranksr = 5,...,50 by randomly sampling00 x r matricesA
andB from a standard normal distributioh”(0, 1) and settingX = AB7. The fraction of observed entrigsis
0.2, and they are sampled uniformly at random. For each expatiniee relative recovery error is measured as
| X =X |p /|| X ||r, whereX is the estimate oK.
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We present comparisons with the following algorithms: OPAGE [22], SVT [25], FPCA [27] and ADMIRA
[28]. All of these are deterministic methods with differespitimization strategies: OPTSPACE is based on op-
timization over the Grasmann manifold, SVT uses nucleamnminimization with singular-value thresholding,
FPCA is a fixed-point Bregman iterative method, and ADMIRAais efficient greedy method which iteratively
adds components during reconstruction.

Our method, developed in Section IlI-A, is denoted by VSBle Wged the procedure proposed in [22] to estimate
the initial target rank required by ADMIRA and OPTSPACE. QOre tother hand, other methods automatically
estimate the rank of the unknown matrix. Notice also thahim proposed method VSBL, all required parameters
(including the noise variance) are estimated in an autairfashion. In VSBL, we uséX’ — X' !|p/|| X ||p <
10~° as the convergence criteria, whe}e and Xi—! are estimates oKX in the ith and (i — 1)th iterations,
respectively.

We consider two test cases, one with noiseless observatimasone where observed entries are corrupted by
zero-mean white Gaussian noise with standard devid@tioh Each simulation result is obtained by averaging 20
random instances. Figure 1 shows the relative recongstrugtiror, running times (on a 3GHz Core2 Duo CPU)
and estimated ranks for each algorithm for both test casesog all algorithms, VSBL provides the highest
recovery performance for all ranks, and also estimates theect rank in all cases where the rank< 35. As
expected, errors in both the recovery and the estimatedinendase as the original rank increases. OPTSPACE and
ADMIRA generally underestimate the rank, whereas FPCA avitl &nsistently overestimate it. A similar behavior
is observed in the presence of observation noise: althooghecovery performance of all algorithms decreases,
VSBL still exhibits a better ability to recover the originadatrix and the correct rank than other methods.

We next consider another set of experimental conditionsrevhe0 x 500 matrices of fixed rank ofil0 are
generated, and the number of observed entries is varieddiegao different oversampling degrees of freedom.
Note that a matrix of sizex x n of rankr depends upon(m-+n—r) degrees of freedoml(), and the oversampling
degrees of freedomogdf) is defined apmn /df with the number of measuremenisin [23]. Experimental results
for osdf = 2,3,...,7 are depicted in Figure 2 for the same noise conditions asealdde corresponding sampling
ratios arep ~ 0.08,0.12,0.16,0.20,0.24,0.28. It is evident that VSBL provides very accurate reconstans and
estimates the correct rank even with very low number of alaiems. In terms of computation time, ADMIRA
provided the best performance in most of the simulationgreds execution times for VSBL were stable throughout
the testing conditions and were comparable to those of ther shethods.

We next illustrate a real-world application of low-rank mpatcompletion methods on rating prediction from
existing ratings. We use the Jester jblend MovielLen datasets, which are commonly used for testing recom-
mendation systems. The Jester joke dataset contains tisgysran jokes where the ratings range fres0 to 10
with 200 quantization levels. The MovieLens dataset casigifuser ratings on movies with integer ratings ranging
from 1 to 5. Most of the entries are not available in these datasetstlangoal is predicting the missing entries
by modeling the dataset as low-rank.

In the Jester joke data set, we generated a full rating mhatriremoving all users containing missing entries,
and applied the algorithms to randomly generated subselssomatrix with different number of users and fraction
of observed rating®. The number of jokes is fixed to 100. As the performance measer use the normalized

mean absolute error (NMAE), which, for this dataset, is (mfiasz“'”egon);j_)(”‘ [27], with Xij the estimated
missing componentd; the set of missing entries, afid| = p. It is known that as with most real data sets, Jester
data set is not low rank or even approximately low rank. Tooaot for this in the proposed algorithm, we used
a fixed, high value for the noise variangg( = 20) to encourage low-rank estimates (other values provided
very similar results). Numerical results (average of 10izations) are shown in Table | for twp values and three
different number of users. It can be observed that VSBL aelsiex better prediction error than other algorithms
in all test cases.

In the MovielLens data set, we experimented with the 100ksaatevith 100,000 ratings from 1000 users on
1700 movies, and the 1M dataset with 1,000,209 ratings frédD6users on 3900 movies. In both datasets, we
randomly generated subsets of the rating matrices by sagpli= 0.1 andp = 0.5 of the available ratings for
each user. Note that the rating matrices are very sparsel00le dataset contains only abdift, of the entries,

2pvailable at http://eigentaste.berkeley.edul/jesteatla
SAvailable at http://www.grouplens.org/node/73/
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TABLE |
NMAE VALUES ON THE JESTER JOKE DATA SET

p=0.1 p=0.5
# of users| 100 300 1000 100 300 1000
VSBL 0.1625| 0.1594| 0.1584| 0.1720| 0.1669 | 0.1626
ADMIRA | 0.1698| 0.1705| 0.1618| 0.1775| 0.1737 | 0.1710
OPT 0.1685| 0.1700| 0.1610| 0.1744| 0.1715| 0.1694
SVT 0.1804 | 0.1682| 0.1621| 0.1943| 0.1824| 0.1743
FPCA 0.2026 | 0.2046 | 0.2052 | 0.2096 | 0.2060 | 0.2051

and the 1M dataset abouf. Therefore, these datasets are extremely challenging &rixrcompletion methods
which do not take any other information into account (suchuser and genre information). The NMAE results
(average of 10 realizations) are shown in Table Il. It can bgeoved that VSBL provides lower prediction errors
than other methods.

B. Robust PCA

1) Comparison with state-of-the-arin our first experiment, we demonstrate the performance efpttoposed
method using synthetic data in comparison with existingeaghes. The low-rank componéXtis generated as in
Section V-A. The non-zero entries of the sparse mdirix R™*" are located uniformly at random and are drawn
from a uniform distribution in the range-10, 10]. The number of non-zero entries is set equab@mn. We
consider both a noise-free and a noisy case where white @aussise with variancé0~ is added to the original
data. As before, the relative recovery error is measureMJIXé X|r /I X|rand| E'—E|r /| E |r and
the convergence criterion &’ — X'~z /||X~!||r < 10~°, whereX’ and E’ represent the estimates in th&
iteration.
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TABLE I
NMAE VALUES ON THE MOVIELENS DATA SETS

Dataset 100k M

p=01| p=05 | p=0.1| p=0.5
VSBL 0.2045 | 0.1350| 0.1840 | 0.1460
OPT 0.2110 | 0.1780| 0.1875 | 0.1755
FPCA | 0.3175| 0.2633| 0.1990 | 0.1862

We present comparisons with the Bayesian method propog@djirfdenoted by BRPCA) and the optimization-
based method in [36] (denoted by ALM). As mentioned beforBPEBA is based on factorizations of both the
low-rank and the sparse components, and low-rank and gpamistraints are imposed using a combination of
beta-Bernoulli priors on each component. The inferenceifopmed using a Markov chain Monte Carlo (MCMC)
sampling scheme. On the other hand, ALM is based on sofstiotding the singular values of the low-rank
component and elements of the sparse component. The inéererdeterministic and is based on the augmented
Lagrange multiplier method. We use the exact inference otkitn [36] and manually tuned its parameters to report
its best performance in terms of recovery error. The proposethod, developed in Section IlI-B, is denoted as
VBRPCA.

Table 1l shows the relative reconstruction error, runntilges (on a 3GHz Core2 Duo CPU) and estimated
ranks/sparsity levels for each algorithm for both noistlasd noisy cases. The average of 10 random instances
is reported in each experiment. It is clear that all methadwide very good reconstructions with both noiseless
and noisy observations; both the low-rank and sparse coemgsrare recovered with high accuracy in all test
cases. While the running times of ALM and VBRPCA are very kEmithe proposed method generally showed
faster convergence rate, especially in large matrix SBEBRCA, on the other hand, has a very high computational
complexity and therefore has longer running times in all teses.

Although ALM is a very attractive method due to its recovemgrfprmance and fast convergence, it does
not provide means to estimate the dense noise level. Thierefe convergence threshold should be adapted to
the noise variance to achieve the optimal performance, lwhéguires user supervision. We empirically found
out that ALM is very sensitive to this parameter, and gemenaquires careful tuning (see [37] for a related
discussion). A comparison of ALM and VBRPCA is shown in Fig. \8here matrices of sizen x n with
m = n = 500, 1000, 2000, 3000, 4000 are generated with the rank of the low-rank component equalm
and the number of non-zeros in the sparse component equadiown. Results are shown both with noiseless
and noisy observations, where in the latter case noisenaiss set equal ta0~3. It is evident that while ALM
provides very low reconstruction errors in the noiselessec#ts performance is significantly decreased and the
rank is consistently overestimated when dense noise i®pre®n the other hand, the performance of VBRPCA
is comparable to ALM in the noiseless case and better in tigy/raase. In addition, VBRPCA estimates the rank
correctly in both cases and requires lower computationgithan ALM. It should be emphasized that ALM required
careful manual tuning of its convergence parameter in gleerments, while VBRPCA automatically estimates all
algorithmic parameters including the dense noise levelPBR has a similar mechanism for automatic noise
estimation through a Bayesian formulation, but its resatts generally inferior to the proposed method and its
computational complexity is significantly higher.

Our second example illustrates a real-world applicatiorbitist PCA methods. We consider the foreground/backgrounc
separation problem in video as in [37]. Each column of theadmaatrix Y is generated by concatenating pixels
of one video frame into a vector. In this application, the dJ@mk component corresponds to the background of
the scene, and the sparse component is used to model thegrahjicts in the foreground. It is clear that for a
completely static background, the ideal estimate of thd @ithe background is 1, but in the case of dynamic
backgrounds (e.g., due to illumination changes), the ramkhle higher.

All algorithms are applied to the video dataonsisting of 158 frames of siz&92 x 144. Example results
obtained by the algorithms in one video frame are shown in #igDue to the slow motion of the people, they
can be incorporated by mistake into the low-rank componieet, the background), which is the case with the

“The data can be found in http://homepages.inf.ed.ac QAN IARDATAL/.
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RELATIVE RECONSTRUCTIONERRORS ESTIMATED RANKS AND COMPUTATION TIMES FORROBUSTPCA
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IE-E|r

Method o | m=n | rankX) | || E [lo | rankX) | 1GeAle L time (s)
ALM 0 200 5 2000 5 35x10°% | 1.3 x 107 1.71
ALM 0 200 10 2000 10 1.5x107% | 0.7 x 1077 2.53
ALM 0 500 25 12500 25 0.6x107% | 0.5x 107" 15.3
ALM 0 1000 50 50000 50 44 %1078 | 6.0x 1077 83.94
BRPCA 0 200 5 2000 4 35x107° | 1.3x10°° 41.40
BRPCA 0 200 10 2000 10 52x107% | 1.2x107* | 358.20
BRPCA 0 500 25 12500 25 1.1x107* | 7.2 x107* | 3116.33
BRPCA 0 1000 50 50000 50 95x107° | 1.9 x 107* | 27160.10
VBRPCA 0 200 5 2000 5 05x107°% | 4.0x 1077 0.81
VBRPCA 0 200 10 2000 10 1.8x107% | 20 x 1077 1.02
VBRPCA 0 500 25 12500 25 21x107% | 4.8 x107 7 7.78
VBRPCA 0 1000 50 50000 50 35x107°% | 1.7x 107" 38.47
ALM 10°° [ 200 5 2000 140 26x10 * | 5.5x 10 * 4.39
ALM 10=% | 200 10 2000 140 20x107* | 6.0 x 107* 4.63
ALM 10=% | 500 25 12500 349 1.3x107* | 6.0 x 107* 40.12
ALM 102 | 1000 50 50000 663 09x107* | 5.0x107* 229.98
BRPCA | 1072 | 200 5 2000 5 41x1072% | 1.2x1073 45.39
BRPCA | 1072 | 200 10 2000 10 42x1072% | 1.7x 1073 370.21
BRPCA | 1072 | 500 25 12500 25 72x1072 | 6.7x 107 | 3360.10
BRPCA | 1072 | 1000 50 50000 50 82x 1072 | 54 x 1072 | 27412.21
VBRPCA | 10°° | 200 5 2000 5 1.0x107° | 1.7 x 107 1* 0.90
VBRPCA | 1072 | 200 10 2000 10 9.0x107° | 1.9x 1074 1.19
VBRPCA | 1072 | 500 25 12500 25 6.4x107° | 1.8 x 1074 7.83
VBRPCA | 1072 | 1000 50 50000 50 3.7x107° | 1.8 x 1074 39.98
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Fig. 3. Comparison of ALM and VBRPCA with varying matrix s&zéor robust PCA. Matrices are of size x n with m = n, the rank of
the low-rank component is set equal @®5m, and the number of non-zeros in the sparse component is sat &).05mn. (a) Relative
reconstruction errors, (b) running times, and (c) estichataks. The legend is common to all figures.

ALM algorithm. This is due to overfitting in the low-rank commpent, which was also observed in the synthetic
experiments with the ALM method in the presence of denseendise BRPCA algorithm provides a better result,
but parts of the foreground are mistakingly classified ak@aind. The proposed algorithm results in a much
cleaner separation, mainly due to the fact that a lower-estknate for the background is enforced compared to
the other methods (the estimated rank in this case is 1). A¢ligs to avoid misclassification of foreground and

background pixels. In this dataset, the running times ofallgerithms were around 10 mins for ALM, 60 mins for
BRPCA, and 11 mins for the proposed method.
2) Comparison of inference methodaithough in this work we developed the algorithms based amatianal

Bayesian inference, other inference methods can be entpkxy&vell based on the same Bayesian modeling shown

in Sec. Il. Here we compare VBRPCA with two other inferenchesues, namely, maximuia posteriori (MAP)
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(c) BRPCA

(d) VBRPCA

Fig. 4. Video background/foreground separation. (a) @ebvideo frame, the reconstructions by (b) ALM, (c) BRPCAddd) VBRPCA.
Left: background reconstructionight: foreground reconstruction.

estimation and Gibbs sampling. This comparison will prewwdme insight both on the effectiveness and accuracy of
the variational Bayesian approach. Moreover, it can be tsedsess the accuracy of the variational approximation.
For both methods, using the observation model (16) and tloespgiven in (8), (9), (10), (14), (17), (18), we
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form the conditional posterior distributions as

p(a.|Y,z\a;.) =N (ai-’éivi}A) ) &4
p(bi[Y,7\bi.) = N (bi[bi, F) | 9
a+m+n 2
i Y,Z i) = Gamma 3 - T1- ’ S7
P(vilY,z\%) < 2 20+ ala, + b.j;b-i> 0
(0¥, 7\ay) = Gamma ( 3, = oY
plo¥2\asy) = Gamma | 5. 7 )
mn 2
Y,z = Gamma, | —, = £ ’ >
p(8Y,z\5) ( 2 HY—ABT—EH%> °9

wherez is the set of all latent variables as befofé&gmma(k, §) is the Gamma distribution with shape parameter
k and scale parametér(see (10)). The parameters of the distributions above aendiy

a; =B34BT (yi. —é&)7 (60)
$4= (AB"BAT) (61)
bl = GEPAT (v, - &), (62)
59 = (BATA+T) (63)

T = diag (%) , (64)
By =5 Sk (v —a:bl) (65)
SE = Bjdij | (66)

The MAP estimates are found as the mode of these distrimjtishereas in Gibbs sampling we sample from
these distributions in an alternating fashion and colleetgampled values. In both cases, the estimated values are
denoted with a tildg").

For empirical comparison, we create synthetic datasetsasito Section V-B1 where the low-rank component
X is 400 x 400 with coefficients drawn from &/ (0, 1) distribution, the sparse matri& has8000 non-zero entries
(sparsity level5%) drawn from a uniform distributiori—10, 10] located uniformly at random. We consider both
noiseless and noisy settings where in the latter case whites&an noise with variance)—2 is added to the
observations. The rank & is varied from 10 to 60 in steps of 10.

The relative reconstruction errors and rank estimateX ailong with average running times are shown in Fig. 5.
Reconstruction errors in the estimates of the sparse coempdh are similar to those oKX and are not shown.

It can be seen that both variational Bayesian inference abhdsGampling provide more accurate estimates than
MAP. The MAP approach is very sensitive to the values of thpelngarameters and b, and is prone to over-
and under-fitting depending on their selection. Similawltssare obtained even when the correct noise level is
provided to MAP (data not shown), indicating that MAP is uleato avoid undesirable local minima. An important
result is that the variational Bayesian inference provigesilts comparable to those of Gibbs sampling in terms
of reconstruction error, and farank < 40, it correctly estimates the unknown rank and the sparsivgllen
addition, its running times are 2-4 orders of magnitude lothan those of Gibbs sampling, although a relatively
low number of iterations are used for the sampling metho@@0Cor burn-in and 2000 for collection, compared to
25000 burn-in and 5000 collection in BRPCA [37]). Its rurmitimes are also comparable to the MAP approach,
which has lower complexity per iteration but generally riegs many more iterations for convergence.

In summary, the inference procedure developed in this wadet on variational Bayesian analysis provides very
accurate results compared to sampling while being comipuatdly considerably more efficient.
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Fig. 5. Comparison of inference methodep row: noiseless caséottom row:noisy caseFrom left to right: relative reconstruction errors,
estimated ranks, and running times.

VI. CONCLUSIONS

In this paper, we have applied sparse Bayesian learningiplés to the low-rank matrix estimation in matrix
completion and robust principal component analysis. Winihiced a formulation where the low-rank constraint
is imposed on the estimate by using its sparse represamtatiarting from the factorized form of the unknown
matrix, we enforce a common sparsity profile on its undegyiomponents using a probabilistic formulation. The
sparse error component in the robust PCA problem is also lmddend effectively inferred by sparse Bayesian
learning principles. We modeled the remaining unknownaldes and observations within the hierarchical Bayesian
framework and developed inference methods based on mddn/igational Bayes approximating the posteriors
of interest. This inference scheme is shown to be advantegeoth in terms of computational requirements and
estimation performance compared to other inference schdemepirical results suggest that the proposed algorithms
are very effective in pruning irrelevant dimensions andvec the correct number of effective components in the
matrix estimate, and they provide competitive, and evehdrigperformance than current state-of-the-art appr@ache
in terms of reconstruction performance.
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