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ABSTRACT
For most MR imaging applications multiple surface coils are

used to obtain images with high signal-to-noise ratios (SNR).

However, signal intensity strongly diminishes with distance.

Although there are a number of approaches to combine the

surface coil images to obtain a high SNR and bias-free im-

age, most of them are developed in an ad hoc manner and

lack a systematic treatment. In this work we propose a new

approach, an iterative weighted constrained least squares

(WCLS) restoration method, for combining surface coil im-

ages. The algorithm is fully automated and outperforms

approaches which appeared in the literature.

Index Terms— Magnetic resonance imaging, Least

squares methods, parameter estimation, Image restoration

1. INTRODUCTION

Magnetic resonance imaging (MRI) has found many appli-

cations in the medical domain. The MRI scanner typically

creates a magnetic field that alters the magnetization of the

hydrogen atoms in the body and causes them to emit radio

signals that are used to form the image of the desired tissue.

Images acquired by whole body coils are used in MRI

which have homogeneous intensity distribution across the

image (bias-free) but have low signal-to-noise ratios (SNRs).

Recently it has been proposed to use an array of surface

coils to obtain images with high SNRs [1, 2]. This approach,

called “Nuclear Magnetic Resonance (NMR) phased array”,

is widely adapted in current MRI technology, and is based on

simultaneously acquiring multiple images with closely posi-

tioned NMR receiver coils and combining these images after

the acquisition. Although the surface coil images clearly have

higher SNRs than whole body coil images, they are degraded

by bias fields due to the locations of each surface coil since

the intensity levels rapidly decrease with distance. In many

applications it is desired to combine the surface coil images

to obtain a high SNR and bias-free image.

The most common approach to combine the acquired im-

ages is the sum of squares (SOS) approach, where each pixel

in the final image is the summation of the pixel in the coil im-

ages weighted by the coil sensitivities (bias fields). Although

this approach provides a simple and fast solution to the prob-

lem, it can only result in lower SNR images and the bias is

not completely removed. Alternative methods, both simple

and complex, resulting in images with superior SNR have re-

cently been proposed [3]. However, these approaches lack a

systematic treatment of the unknown variables and the obser-

vations, and they are proposed in an ad hoc manner. There are

other methods based on Bayesian blind deconvolution princi-

ples [4], but to our knowledge no work has been reported for

combining the surface coil images when the bias fields are

assumed to be known.

In this paper we provide a weighted constrained least

squares formulation of the problem, and propose an itera-

tive solution for combining the surface coil images. We also

provide means to estimate the parameters in our model so

that the proposed algorithm becomes fully automated. The

experimental results demonstrate that the proposed algorithm

clearly outperforms existing approaches with a low level of

computational complexity.

This paper is organized as follows. In Sec. 2 we formu-

late the problem of combining the surface coil images as a

constrained least squares problem. The iterative algorithm is

presented in Sec. 3 and the choice of the weighting matri-

ces for spatial adaptivity is discussed in Sec. 4. Experimental

results are presented in Sec. 5 and conclusions are drawn in

Sec. 6.

2. PROBLEM FORMULATION

Let the total number of surface coils be equal to m. The NMR

phased array can be described mathematically as follows

gi = bi ⊗ f + ni, i = 1, ...,m, (1)

where gi denotes the ith surface coil image, f is the unknown

image of interest, and bi and ni denote the bias field (sen-

sitivity) and the noise introduced by the ith surface coil, re-

spectively. We assume that all images are of size p × q and
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that the noise ni in each channel is additive Gaussian, but its

variance can vary across channels. The operator ⊗ is the Kro-

necker product. The product of images bi ⊗ f can be written

as a matrix product by forming the pq × pq diagonal matrix

Bi from bi. Then, the system of equations in Eq. (1) can be

written in matrix-vector form by combining the bias fields Bi

into a mpq × pq matrix B, and combining and lexicographi-

cally ordering the images gi, bi and ni as pq×1 vectors, that

is,
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which can be written in a compact form as

g = Bf + n. (2)

Based on the degradation model in Eq. (2), a spatially

adaptive constrained least squares solution can be obtained

by minimizing the following functional

Mw(λ(f), f) =‖ g − Bf ‖2
W1

+λ(f) ‖ Cf ‖2
W2

, (3)

where λ(f) is the Lagrangian multiplier, C is a high-pass op-

erator (e.g., discrete Laplacian), and W1 and W2 are comple-

mentary diagonal weighting matrices with W1 = I−W2. As

is well known, the parameter λ(f) controls the trade-off be-

tween the fidelity to the data introduced by the term ‖ g −
Bf ‖2

W1
and the smoothness of the solution imposed by the

term ‖ Cf ‖2
W2

, and is therefore also called the regulariza-

tion parameter. The spatial adaptivity is introduced by choos-

ing appropriately the matrices W1 and W2 depending on the

unknown image f . We will discuss their selection in Sec. 4.

3. ITERATIVE ALGORITHM

A closed form solution of the minimizer of the functional

Mw(λ(f), f) in Eq. (3) with respect to all unknowns (λ(f), f)
can not be found because it is not linear. Therefore an it-

erative minimization procedure has to be applied, where the

unknown image f and the regularization parameter λ(f) are

estimated in successive steps.

In the first step, we consider the necessary condition for a

minimum of Mw(λ(f), f) by taking its derivative with respect

to f and setting it equal to zero. Thus, the optimal f satisfies

[
BHWT

1 W1B + λ(f)CT WT
2 W2C

]
f = BHWT

1 W1g,
(4)

where BH is the Hermitian transpose of B. Due to the high

dimensionality of the vector and matrices involved the direct

solution of this equation is hard to obtain. Instead one can

adopt numerical approaches such as gradient descent or con-

jugate gradient to find an estimate for the unknown image f .

In the second step, we define the functional form of

the regularization parameter λ(f), so that the functional

Mw(λ(f), f) is convex and has a unique global minimizer.

This can be accomplished by satisfying three properties

(see [5] for details) which result in

λ(f) = f(Mw(λ(f), f)) = γ1Mw(λ(f), f), (5)

and

λ(f) =
‖ g − Bf ‖2

W1

(1/γ1)− ‖ Cf ‖2
W2

, (6)

where γ1 is a coefficient that controls the convexity. We

choose it as γ1 = 1
2‖g‖2 to guarantee convergence and con-

vexity [5, 6].

Note that all matrix operations described above can be im-

plemented using operators, therefore the memory requirement

of the proposed algorithm is small.

4. CHOICE OF THE WEIGHTING MATRICES

The weighting matrices W1 and W2 control the amount of

smoothing at each pixel location depending on the strength of

the intensity variation at that pixel that can be computed in a

number of ways. For the pixels with high spatial activity the

corresponding entries of W2 are very small or zero, which

means that no smoothness is enforced, while for the pixels in

a flat region the corresponding entries of W2 are very large,

which means that smoothness is enforced. This matrix W2

has also been referred to as the visibility matrix [7] since it

describes the masking property of the human visual system,

according to which noise is not visible in high spatial activity

regions (its high frequencies are masked by the edges), while

it is visible in the low spatial frequency (flat) regions. The vis-

ibility matrix and its complementary matrix have been used in

iterative image restoration in [6].

Based on our experiments, in this paper we utilize the lo-

cal variance matrix Θ(f) given by

Θ(f) =

⎡
⎢⎢⎢⎢⎣

σ2
1 0 0 · ·
0 σ2

2 0 · ·
· 0 σ2

3 0 ·
·

σ2
pq

⎤
⎥⎥⎥⎥⎦

, (7)

where σ2
i is the local variance within a window around the

pixel i. Then the weighting matrices can be calculated as fol-

lows

W1 = I − W2 = I − Θ(f)
γf

, (8)

where γf is the maximum of the entries of Θ(f), i.e., γf =
‖ Θ(f) ‖∞.
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(a) (b)

(c) (d)

Fig. 1. Results of restoring a simulated 1D object profile.

(a) Four Gaussian-shaped coil sensitivity functions (in color)

and the original object profile; the recovered profiles using (b)

SOS, (c) SUPER and (d) the proposed method. The original

object profile is also shown in (b), (c) and (d) for comparison.

5. EXPERIMENTAL RESULTS

We performed a number of experiments using the proposed

algorithm. We will present here results with both synthetic

and real data to show the performance of the algorithm com-

pared to the SOS [2], SUPER [3], and real-SUPER algo-

rithms [3]. The real data experiments consist of phantom and

in vivo studies. Phantom studies were performed using a 3.0T

clinical MRI scanner (Siemens Magnetom Trio), and for the

in vivo studies we used a 1.5T Siemens Magnetom Avanto.

All experiments used a standard GRE sequence with the fol-

lowing parameters: TR/TE=100/10ms (phantom), 60/13ms

(in vivo), BW = 630Hz, flip angle = 30 , and slice thickness

= 5mm. 6 channels of anterior body coil were selected for

imaging a Siemens Multipurpose MRI phantom. An addi-

tional image of the same slice position was acquired from the

body coil for both studies.

To obtain estimates for the bias fields of the surface coils,

we acquired in addition an image from the whole body coil

without bias but with a high noise level. The coil sensitivi-

ties are then approximately estimated by dividing the whole

body coil image by each surface coil image. In our volunteer

study, the image acquisition parameters are set so that the sur-

face coil images and the whole body coil image are acquired

consecutively within a breath-hold (20 sec). Of course, these

estimates are very crude, but as shown below, high quality

restorations are obtained using the proposed algorithm. For

all experiments, the criterion ‖ fk − fk−1 ‖2 / ‖ fk−1 ‖2<
10−6 is used to terminate the iterative procedure, and simi-

Fig. 2. Six surface coil images of the abdomen of a volunteer.

(a) (b)

(c) (d)

Fig. 3. Combination results of the images in Fig. (2) using the

(a) conventional SOS method, (b) the SUPER method, (c) the

real-SUPER method and (d) the proposed approach.

larly the CG threshold is set to 10−6. In the experiments with

images, a 3x3 window is used to calculate the local variances

in the proposed algorithm.

In the first experiment we simulated an 1D object multi-

plied by 4 Gaussian-shaped bias fields, and zero mean Gaus-

sian noise with variance 0.1 is added so that the resulting SNR

= 10dB. The original signal and the bias fields are shown in

Fig. 1(a). The restored signals by the methods SOS, SUPER,

and WCLS are shown in Figs. 1(b)-(d). For WCLS, a 5 pixel

window is used to calculate the local variances, and Eq. (4) is
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solved using successive approximation iterations. The corre-

sponding sum of squared errors (SSE) are 20.72, 10.53, and

5.72, respectively. It is clear from the restored signals and

the SSEs that the proposed algorithm outperforms the other

algorithm significantly.

In the second experiment, algorithms are applied to sur-

face coil images of a human abdomen. The acquired images

are shown in Fig. (2). It is clear that some images are de-

graded by strong bias fields, whereas other images have a

more homogeneous intensity profile but have low SNR. The

combined images using the SOS, SUPER, real-SUPER, and

WCLS algorithm are shown in Fig. (3). It is clear that the

former methods fail to remove the bias fields completely, and

the noise level is not significantly decreased. On the other

hand, the bias in the combined image of WCLS is almost

completely eliminated where at the same time the image is

very smooth and practically noise-free.

The resolution in the combined image is of high impor-

tance in medical applications. Since the proposed algorithm

incorporates smoothing in its formulation, this can present

a practical problem. Therefore, to demonstrate the perfor-

mance of WCLS in maintaining the high resolution, in the

last experiment we apply the algorithms to surface coil im-

ages of a grid phantom. The results of the algorithms are

shown in Fig. (4). Note that again, the existing methods can

not completely remove the bias fields and there is a substan-

tial level of noise but there is no loss of resolution. It is also

clear that WCLS provides an image with much higher qual-

ity in terms of noise and bias removal. Additionally the high

resolution is preserved which can be clearly observed from

the top-left and bottom-right areas where the holes are placed

very close to each other. Finally, it should be noted that the

amount of smoothing can be decreased by adjusting the win-

dow size in calculating Eq. (7) or completely removed by set-

ting λ(f) = 0.

The proposed algorithm is computationally more inten-

sive than other methods mainly because of the CG iterations

required to solve Eq. (4). However, the MATLAB implemen-

tation of the algorithm required on the average under 10 sec-

onds on a 3.20 GHz Xeon PC for 384x192 images. Therefore

the running time of the algorithm is quite acceptable consid-

ering the level of the increase in the final image quality.

6. CONCLUSIONS

In this paper we represented an novel algorithm to combine

MR surface coil images. We adopted a weighted constrained

least squares formulation which resulted in an iterative

restoration algorithm. The proposed algorithm incorporates

spatial-adaptivity in the restoration process. Additionally, pa-

rameter estimation is performed at each iteration so that the

algorithm works automatically without any assumptions. Ex-

perimental results demonstrate that the proposed algorithm

significantly outperforms existing approaches with a small

increase in computational complexity.

(a) (b)

(c) (d)

Fig. 4. Combination results of the coil images of a grid phan-

tom using the (a) conventional SOS method, (b) the SUPER

method, (c) the real-SUPER method and (d) the proposed ap-

proach.
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