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Variational Bayesian Blind Deconvolution
Using a Total Variation Prior
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Abstract—In this paper, we present novel algorithms for total
variation (TV) based blind deconvolution and parameter esti-
mation utilizing a variational framework. Using a hierarchical
Bayesian model, the unknown image, blur, and hyperparameters
for the image, blur, and noise priors are estimated simultaneously.
A variational inference approach is utilized so that approximations
of the posterior distributions of the unknowns are obtained, thus
providing a measure of the uncertainty of the estimates. Experi-
mental results demonstrate that the proposed approaches provide
higher restoration performance than non-TV-based methods
without any assumptions about the unknown hyperparameters.

Index Terms—Bayesian methods, blind deconvolution, param-
eter estimation, total variation (TV), variational methods.

I. INTRODUCTION

MAGE acquisition systems introduce blurring degradation
I to the acquired image. In many applications, it is desired to
undo this process. Blind deconvolution refers to a class of prob-
lems when the original image is estimated from the degraded
observations where the exact information about the degrada-
tion and noise is not available. The blind deconvolution problem
is very challenging since it is hard to infer the original image
and the unknown degradation only from the observed image.
Moreover, the degradation is generally nonlinear (due to satu-
ration, quantization, etc.) and spatially varying (lens imperfec-
tions, nonuniform motion, etc). However, most of the work in
the literature approximates the degradation process by a linear
spatially invariant (LSI) system, where the original image is
convolved by the blur point spread function (PSF) and indepen-
dent white Gaussian noise is added to the blurred image.
There are many applications where the PSF is unknown or
partially known, where blind deconvolution is needed, such as
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astronomical imaging, remote sensing, microscopy, medical
imaging, optics, photography, super-resolution applications,
and motion tracking applications, among others.

A number of methods have been proposed to address the blind
deconvolution problem. Reviews of the major approaches can
be found in [2] and [3]. Blind deconvolution methods can be
classified into two main categories based on the stage where
the blur is identified. In the a priori blur identification methods,
the PSF is estimated separately from the original image, and
then used in an image restoration method [4]. The second cate-
gory of methods, referred to as joint identification methods, pro-
vide an estimate of the original image and blur simultaneously
[5]-[11]. Typically, these methods incorporate prior knowledge
about the original image, degradation, and noise in the estima-
tion process. This prior knowledge can be exploited with the use
of convex sets and regularization techniques, or with the use of
the Bayesian framework with prior models on the unknown pa-
rameters.

Methods based on the Bayesian formulation are of the most
commonly used methods in blind deconvolution. Such methods
introduce prior models on the image, blur, and their model pa-
rameters, which impose constraints on the estimates and act
as regularizers. Simultaneous autoregressive (SAR), conditional
autoregressive (CAR), and Gaussian models are some of the
commonly used priors for the image and blur. With the use of
these mathematical models one can try to model different types
of blurs, like out-of-focus, motion, or Gaussian blurs, and dif-
ferent characteristics of the original image, such as smoothness
and sharp edges.

Recently, there has been an interest in applying variational
methods to the blind deconvolution problem. These methods
aim at obtaining approximations to the posterior distributions
of the unknowns with the use of the Kullback-Leibler (KL) di-
vergence [12]. This variational methodology to the blind decon-
volution problem in a Bayesian formulation has been utilized in
[6], [7], [13], and [14].

In this paper, we propose to use variational methods for the
blind deconvolution problem by incorporating a total variation
(TV) function as the image prior, and a SAR model as the blur
prior. Although the TV model has been used in a regularization
formulation in blind deconvolution before (see, for example,
[5]), to the best of our knowledge, no work has been reported
on the simultaneous estimation of the model parameters, image,
and blur. Previous works attempted to solve for the unknown
image and the blur, but the model parameters are manually se-
lected [5], [15]. Moreover, we cast the TV-based blind decon-
volution into a Bayesian estimation problem, which provides
advantages in blind deconvolution, such as means to estimate
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the uncertainties of the estimates. We develop two novel varia-
tional methods based on the hierarchical Bayesian formulation,
and provide approximations to the posterior distributions of the
image, blur, and model parameters rather than point estimates.

This paper is organized as follows. In Section II, we present
the hierarchical Bayesian model and the prior models on the ob-
servation, the image and the blur. Section III describes the varia-
tional approximation method utilized in the Bayesian inference.
We present experimental results in Section IV, and conclusions
are drawn in Section V.

II. HIERARCHICAL BAYESIAN MODELING

The image degradation model is often presented as a discrete
linear and spatially invariant system, which can be expressed in
matrix-vector form as

y=Hx+n D

where the vectors X, y, and n represent respectively the orig-
inal image, the available noisy and blurred image, and the noise
with independent elements of variance 02 = 37!, and H rep-
resents the unknown block-circulant blurring matrix formed by
the degradation system with impulse response h. The images
are of size N = n X m so that the vectors y and x are of size
N x 1 and the matrix H is of size N x V. Note that (1) can also
be written as y = Xh + n by forming the matrix X similarly to
H. The blind deconvolution problem calls for finding estimates
of x and h given y, and using knowledge about n and possibly
x and h.

In Bayesian models, all unknown parameters are treated as
stochastic quantities and probability distributions are assigned
to them. The unknown parameters x and h are assigned prior
distributions p(x|a;m) and p(h|ay), which model the knowl-
edge about the nature of the original image and the blur, respec-
tively. The observation y is also a random process with the cor-
responding conditional distribution p(y|x, h, 3). Clearly, these
distributions depend on the model parameters a;m, ap, and 3,
which are called hyperparameters. The meaning of the hyper-
parameters will become clear when the prior distributions are
defined below. In this paper, we will denote the set of hyperpa-
rameters as Q = (m, a1, B).

The Bayesian modeling of this problem firstly requires the
definition of the joint probability distribution of all unknown
and observed quantities, which is factorized as

p(ainu Qpl, /67 X, h: Y) = p(ainu Qpl, /B)p(x|051m)
xp(hlap)p(y|x, b, 8). (2)

To alleviate the ill-posed nature of the blind deconvolution
problem, prior knowledge about the unknown image and the
blur is incorporated through the use of the prior distributions.
If the hyperparameters are not assumed known, they have to
be estimated simultaneously with the unknown parameters. To
achieve this we utilize a hierarchical model which has two steps:
In the first step, the a priori probability distributions p(h|ay,)
and p(x|aim) and the conditional distribution p(y|x, h, 3) are
formed that model the structure of the PSF, the original image,
and the noise, respectively. In the second stage, hyperpriors on

the hyperparameters (3, ain, and ay,) are defined to model the
prior knowledge of their values.

In the next subsections, we first describe the prior models
for the image and the PSF as well as the observation model
we use in the first stage of the hierarchical Bayesian paradigm.
We then proceed to explain the hyperprior distributions on the
hyperparameters.

A. First Stage: Prior Models on the Observation, PSF and
Image

We assume that the degradation noise is independent and
Gaussian with zero mean and variance equal to (3 -1 and con-
sequently we have

p(yPx, b, B) o< 57/ exp [—gny - Hxllﬂ )

For the image prior we adopt the TV function, that is
1

0 —

Zrv (i)

where Ztv(im) is the partition function. The TV function is
defined as

pP(X|im) exp [—aim TV(x)] 4

Ve = V(M) + A )

where the operators A (x) and A?(x) correspond to, respec-
tively, the horizontal and vertical first order differences at pixel
i. In other words, A" (x) = z; — m;) and AY(X) = @3 — T4(3),
with [(4) and a(%) denoting the nearest horizontal and vertical
neighbors of pixel ¢, respectively. The TV prior has become
very popular recently in the restoration literature because of its
edge-preserving property by not over-penalizing discontinuities
in the image while imposing smoothness [16]. Note that the TV
prior is an improper prior (see, for example, [17]), but if inte-
grated in an adequate affine subspace (a hyperplane), the density
is normalizable.

The calculation of the partition function Zry(aim) =
J exp[—aimTV(x)]dx in (4) presents a major difficulty. We
can, however, approximate it by using [18]

//exp[—aim\/ 82 + t2]dsdt = 2m /o, (6)

Therefore, the TV prior can be approximated as

p(X|aim) = cary”

exp [—aim TV (x)] @)

with ¢ a constant.
We utilize the SAR model for the blur prior, that is

y 1
plblonn) o o exp {~Jowcn] @

where C denotes the discrete Laplacian operator, agll is the
variance of the Gaussian distribution, and M is the support of
the blur, which is assumed to be the same as the image support.
Note that in (8), M should in theory be replaced by M — 1,
because CT C is singular. The SAR model is very efficient in
estimating smooth PSFs, for instance, a Gaussian PSF mod-
eling long-term atmospheric turbulence. Our selection of the
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SAR prior is based on the fact that we aim at restoring images
which have been blurred with smoothly varying PSFs. As we
will show in the experiments, for such PSFs the proposed prior
works better than TV-based blur priors (e.g., [S] and [15]). On
the other hand, a TV blur prior models better piecewise smooth
priors such as the rectangular shaped and out of focus blurs. This
is in agreement with the fact that TV models are better image
priors than autoregressive models.

B. Second Stage: Hyperpriors on the Hyperparameters

The hyperparameters are important in determining the perfor-
mance of the algorithms to a great extent. In most previous work,
the hyperparameters are assumed known. However, this requires
a significant amount of supervision in the restoration process. To
ameliorate this problem, in this work they are assumed unknown
and are simultaneously estimated by introducing a second stage
in the Bayesian model.

Finding the form of the hyperprior distributions that
allows for easy calculation of the posterior distribution
p(Q,x,hly) is a major problem in Bayesian literature. A
desired property for the hyperprior is to be conjugate [19],
that is, to have the same functional form with the product
p(x|aim)p(h]an)p(y|x, h, 8), so that the posterior distribu-
tion will have the same functional form as the prior distribution,
only the parameters will be updated by the sample information.

Based on the above, we utilize the Gamma distribution for the
hyperparameters «;y,, o) and (3, since it is the conjugate prior
for the inverse variance (precision) of the Gaussian distribution.
The Gamma distribution is defined by

_ o
(bgj) ‘e wa:’)—l

P (a2 b2) = "y

p(w) = exp [—H ©)
w

where w > 0 denotes a hyperparameter, b2, > 0 is the scale
parameter, and a’, > 0 is the shape parameter, both of which
are assumed to be known and introduce our prior knowledge
on the hyperparameters. We discuss the selection of the shape
and scale parameters in the experimental section. The gamma
distribution has the following mean, variance, and mode:

Elw] = a2b%, Var[w] = a (b°)°, Mode[w] = (a2, — 1)1,

(10)

Note that in addition to the advantage of the already described
conjugacy property, the Gamma distribution allows for the in-
corporation of more vague or precise knowledge about the pre-
cision parameters. By simply replacing a’, by a? - A and b?, by
b2,/ A, another Gamma distribution with the same mean but with
variance a2,b2, - A can be obtained. Therefore, by varying A we
maintain the same mean of the precision parameter w but can
vary the confidence on this mean.

Finally, by combining the first and second stage of the hi-
erarchical Bayesian model, the joint distribution in (2) can be
defined. The dependencies in this joint probability model are

shown in graphical form in Fig. 1 using a directed acyclic graph.
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Fig. 1. Graphical model showing relationships between variables.

III. BAYESIAN INFERENCE AND VARIATIONAL APPROXIMATION
OF THE POSTERIOR DISTRIBUTIONS

We will denote the set of all unknowns by © = (2, x,h) =
(Qim, a1, 3, %, h). As is widely known, Bayesian inference is
based on the posterior distribution

p(ainn Qpl, /H, X, h7 y)

C) = im; 737 7h =
p( |y) p(a apl, 3,X |y) p(y)

(11)
where p(aim, aul, 8, X, h,y) is given by (2). However, the pos-

terior p(©|y) is intractable, since
) /87 X, hv y)dthdﬂdabldaim

Sf 1]

cannot be calculated analytically. Therefore, we consider an ap-
proximation of p(©|y) by a simpler tractable distribution q(©)
following the variational methodology [20]. The distribution
q(©) will be found by minimizing the KL divergence, given by
[12], [21]

Crr <q<®>||p<®|y>>=./ <@>1°g< (Ea(?i))d@
qa(®) )d@+con5t (13)

N /q<®) o <p(®7 y)

which is always nonnegative and equal to zero only when
q(0) = p(Oly). In order to obtain a tractable approximation,
the family of distributions q(©) are restricted utilizing the
mean field approximation [22] so that q(0©) = q(Q)q(x)q(h),
where (€2) = q(aim)d(ap)a(f).

However, the use of the TV prior makes the integral in (13)
difficult to evaluate even with this factorization. Therefore, a
majorization of the TV prior is utilized to find an upper bound
of the KL divergence. First, we define the following functional
M(aim, x, u), for aip,, X, and any N-dimensional vector u €
(RH)N

M(tim, x, 1) = aN/2

(AF ()" + (AY(x))" + s

N

1m

X exp (14)
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Now, using the following inequality for w > 0 and z > 0

R e (15)
2v/z
we obtain from (7)
exp [—aim TV (x)]
~ exp alm2¢ L) + (A7)
aim o (AF(x AY(x))° + i
> exp l Z J(u_ 4] e

which leads to the following lower bound for the image prior:

p(x|aim) Z C- M(ainn X, u) (17)
and the following lower bound for the joint probability distribu-
tion:

p(®7 y) >C- p(Q)M(aim7X7 U)P(h|ab1)P(Y|X7 h7 ﬁ)

=F(0,u,y). (18)

For § € {aim,an,3,x,h} let us denote by O, the

subset of © with # removed; for instance, if § = x,

Ox = (Qim,an, [,h). Then, utilizing the lower bound

F(©,u,y) for the joint probability distribution in (13) we
obtain an upper bound for the KL divergence as follows:

M(a(©) = [ a(©)log (p?éf);)) 46

=M (q(©),u). (19)

Therefore, we minimize this upper bound instead of mini-
mizing the KL divergence in (13). Note that the form of the
inequality in (19) suggests an alternating (cyclic) optimization
strategy where the algorithm cycles through the unknown dis-
tributions and replaces each with a revised estimate given by
the minimum of (19) with the other distributions held constant.
Thus, given (Oy), the posterior approximation q(f) can be
computed by solving

ae) = ar:g(rer)lin Crr (a(©g)a(d)[IF(O,u,y)).

(20)

In order to solve this equation, we note that differentiating the
integral on the right hand side in (19) with respect to q(#) results
in (see [23, Eq. (2.28)])

q(#) = const X exp (Eq(@o) [log F(@,u,y)]) 21

where

Eqeo,) [log F(©,u,y)] = /108; F(0,1,y)q(04)d0y.

We obtain the following iterative procedure to find q(©) by
applying this minimization to each unknown in an alternating
way:

Algorithm 1

Given q*(h), q' (aim), q* (ap1), and g (3), initial estimates of
the distributions q(h), q(aim), q(an), and q(5),

fork=1,2,...
1) Find

qk = arg min / /
a(x)

until a stopping criterion is met:

k
9" (Ox)a(x)
x log <—F (©F . x, uf,y) dOydx. (22)
2) Find
qk'i'1 = argmm// (Gn)q
q(h)
q"(On)q(h)
1 ————— == 1 dOpdh. (23
x log (F(@l’i7h7uk,y) h (23)
3) Find
u = argmin [ o (@40 h)
k k+1
4" (On)q" " (h)
1 de. (4
e <F(@ﬁ,h’“+17u,Y) @9
4) Find
(@) —argmin [ [ ¢*(©a)a()
a(2)
k
q"(©q)q(f2)
1 dOqd. (25
X Og<F(C._‘)k7517uk7 ) ( )

Now we proceed to state the solutions at each step of the
algorithm [(22)—(25)] explicitly. For simplicity, we will use

the following notations Ek( ) = Egi(x), covk( ) =
covgr ) (), EF(h) = E, ‘bl B ‘@) - (m) (H),
covF(h) = cov x(h)(h) Ef (aim) = B a]m)(alm)
Ek(ozbl) = Eq"(m,l)(abl) and E (,3) = qk(ﬁ)([)))

From (21), it can be shown that q*(x) is an N-dimensional
Gaussian distribution, rewritten as

(x)=N (X|Ek(x),covk(x)) .

The covariance and mean of this normal distribution can be cal-
culated from (22) as

cov® (x) = (B (8)E* (H)"EF (H)+E* (cim ) (A")'W ( F)at)
+ EF (Ctim)(A")? (uk)( )—|—NEk cov h)) (26)
EF(x) = cov®(x)EF (B)EF (H)'y (27)
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where (-)! is the transpose and W (u) is the N x N diagonal
matrix of the form

W(u)zdiag( 1k), t1=1,...,N. (28)

Similarly to ¢* (x), ¢*(h) is an M-dimensional Gaussian dis-
tribution, given by

q"*!(h) = N (h[E*! (h), cov**! (h)) (29)
with
cov®t(h) = (E¥(an)C'C + EF(B)EF(X)'E*(X)
+NEF(B)covk(x)) " (30)
and
EFtl(h) = cov* ! (h)E*(B)EF(X)"y. 31)

It is worth emphasizing here that we did not assume a priori
that q*(x) and q*(h) are Gaussian distributions. This result is
derived due to the minimization of the KL divergence with re-
spect to all possible distributions according to the factorization
q(0) = q(aim)a(an)a(B)a(x)q(h) [24]. Note also that the
image estimate in (27) is very similar to the image estimate pro-
posed in [5] within a regularization framework; the uncertainty
term N3¥cov i p)lh] is missing, however, in [5]. As we will
see in the experimental results, this formulation will provide im-
proved restoration results.

In step 4 of the algorithm, we find u*+!

from (24), given by

weo [(A00)" + (A1)] + s

E
u**! = argmin E
u .
K2

(32)
Therefore, u**?! can be obtained as

Wt = B [(AF(0)" + (AV)?], i=1, N

3 K3

(33)
where
By [ (AF))" + (A7(x))°]
= (aF (B())" + (a7 (B*(0))*
+ B [ (A (x = B*(x)))’]
+ Barge [ (A7 (x = B* ()] (34)
and

Eqio [ (A7 (6= B*X)))"] + Eqro [ (A7 (x = E*(0)))’]

- %traee [cov®(x) x ((AM)H(AM) + (AY)H(AY)] . (35)

It is clear that the vector u**! in (33) represents the local

spatial activity of x using its distribution approximation q*(x).
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Consequently, the matrix W (u**1) in (28) is the spatial adap-
tivity matrix at iteration k 4+ 1 and it controls the smoothing
applied to the unknown image in the restoration process. For in-
stance, at strong edges where the vector u**! has large values,
W (u*F*+1) will have small values so the amount of smoothing
is decreased. On the other hand, in smooth regions the corre-
sponding entry of W (u**1) will be very high, so smoothness
is enforced. This property of the restoration is also in accor-
dance with the fact that noise is perceived as more visible in
uniform regions than at edges (masking effect of the human vi-
sual system). Note also that the spatial adaptivity matrix is also
referred to as the visibility matrix [25] and has been utilized in
some image restoration approaches (see, for instance, [26] and
[27]).

After finding estimates of the posterior distributions of the
image and blur, we find the estimates for the hyperpriors at the
last step of the algorithm. For w € {aim, apl, 8}, evaluating
(25) using (21) results in

A" (w) o exp Eqr (x)qi+1 (m)a(a)
[IOgF (ij W, ka hk+17 uk+17y)] .

Evaluating this explicitly, we obtain

E gt x)qt+1(n) [log F(O)]

>

we{Aim,an1,8}

= const + ((a, —1)logw — w/b?)

N M N
+ Elogaim—l— 710g0zb1+ Elogﬂ

(A2(x))* + (AY(x))* + uk*?

1
I imE *(x
TN =

1
— EOéblEqurl(h) [HChHZ]

1
= 30Bak ot [Ily — Hx|] (36)
where
(Ak(x))"+(A7(x))* +ub*! [
Eqk (x) ; uk+1 =92 Z u; +1
37
Eqr+1(n) [||Ch||2] = ||CEk+1(h)||2—|—trace (Cthovk(h))
(38)
and

Bt a1y Iy — Hx||?]
= [ly = B ()BF (o) trace (Neov* (x)eov+ ()
+ trace (ElC (X)tEk(X)COVkH(h))

+ trace (BT (H)'EF! (H)cov¥(x)) . (39)

It can be seen from (36) that all hyperparameters have gamma
distributions, given by
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qk+1(alm)0(af;/2+ aim L
X exp | —im <1/ba1m+2 \ /ui?'i'l)] (40)
]W/Z-i--afY —
qk+1(0lb1)0( ay, bl
vty [[ICh?
xexp | —a (1/62, + B )2[ )

(41)
qk+l(ﬁ) o /BN/2+a:§—l

Utilizing the fact that the distributions on x and h are degen-
erate, that is

1, ifx=x

ax) =8(x —x) = { 0, otherwise @7
1, ifh=h

q(h) =8(h —h) = { 0, otherwise “8)

with §(+) the delta function, we obtain the following algorithm
2, where we use x* and h* to denote the values q* (x) and ¢* (h)
take with probability one, respectively, that is, ¢*(x) = §(x —
x*) and q*(h) = §(h — hF¥).

Algorithm 2

o Egrpogr+im [lly—Hx|?]
xexpl—ﬂ(l/bﬂ+ 5 .

(42)

The means of these gamma distributions can be found using
(10) and are represented as follows:

Z k+1

- 1
Ek+1 im ! o 1 =74, 43
(B (aim)) = ,ma;,er( Votim) —T— N2 (43)
-1 1
(Ek+1(ab1)) =Y =5~ + (1 - 7111)1)
ap)
Egtt1qn [IChP?] (44
M
-1 1
(E*(9)) =V +(1=s)
Eqr (x)qt+1(n) [Ily — Hx|]?] 45)
N
where @, = a2, /b%, . @w = ag, /b2, and B = a%/bg and
_ a‘?‘vim _ agbl _ ag
Yetim ag‘m + %7 Yo angl + %7 VB a% n %
(46)

The parameters 7q;,, > Yo, » and g can be understood as nor-
malized confidence parameters, as can be seen from (43)—(46)
and they take values in the interval [0,1). Therefore, the means
of the posterior distributions of the hyperparameters are convex
combinations of the prior hyperparameter values and their max-
imum likelihood (ML) estimates. When the confidence param-
eters are asymptotically equal to zero no confidence is placed
on the initial values of the hyperparameters, and their ML esti-
mates are used. On the other hand, a value asymptotically equal
to one will result in no update on the hyperparameters, so that
the algorithm will fully rely on the given initial parameters. In
this case, no estimation of the hyperparameters is performed.

In Algorithm 1, no assumptions were imposed on the poste-
rior approximations ¢(x) and q(h). We can, however, assume
that these distributions are degenerate, i.e., distributions which
take one value with probability one and the rest of the values
with probability zero. We can obtain another algorithm under
this assumption which is similar to algorithm 1. In this second
algorithm, the value of the KL divergence is again decreased at
each update step, but not by the maximum possible amount as
was the case in algorithm 1.

Given q*(h), q* (aim), q* (ap1), and g (3) the initial estimates
of the distributions q(h), q(cim), q(an1) and q(3), with ¢ (h)
a degenerate distribution on h',

fork=1,2,...
1) Calculate

until a stopping criterion is met:

x* = (B*(3)(H") B + B (i) (A")'W (u") (A7)

FEF (i) (A7) W () (A7) T R () (HY)'y. (49)
2) Calculate
h* = (E*(ap)C'C + EX(8)(X5)'XY) 7 EF(8)(XF)'x.
3) Calculate e
ubt = (AR + (AYR))Y, i=1,...,N. (51)
4) Calculate
q" ! (tim, apl, B) = 4" (@im) " (an))dTH(B)  (52)

where ¢* (aim), ¢! (ap1) and ¢*+1(3) are gamma
distributions given, respectively, by

T T,
X exp | —im (1/1);“ +y \/uf“)} (53)
M/24a% —1
qk+1(ab1) X iy "
[ Chk 2
X €Xp [ —Qp] <1/bab1 || 2 H )] (54)
qk+1(/8) O(ﬂN/2+a,f,—1
- — HFxk|2
X exp | -3 (1/bg n u)} . (55)
Set
A(im, a1, B) = lim a" (tim, abl, B),
%= lim x* h_ hm h*. (56)

k—oo k—o0
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The update equations for the inverse of the means of the hy-
perparameters are then obtained from (53)—(55) as follows:

k+1
i -1 1 Zz Uy
(Ek+1(aim)) =Yaim = T (1= Yaim) N2 (57)
. 1 1 ChF |2
(EkJrl(abl)) = Yo a_o + (1 - '7041)1) % (58)
bl
ly — HFx"|?

(EF+1() " :w% + (1 =) (59)

N

It is clear that using degenerate distributions for x and h in
Algorithm 2 removes the uncertainty terms of the image and
blur estimates. We will show in the experimental results section
that these uncertainty terms (the covariances of x and h) help to
improve the restoration performance in high-noise cases, where
the image and blur estimates can be poor. The poor estimation
of one variable can influence the estimation of the other un-
knowns because of the alternating optimization procedure, and
the overall performance of the algorithm will be affected. By
estimating the full posterior distribution instead of the points
corresponding to the maximum probability, the uncertainty of
the estimates can be used to ameliorate these effects in the esti-
mation of the unknowns. On the other hand, at low-noise cases
where the estimates of the unknowns are more precise, Algo-
rithm 2 results in better restorations.

Summarizing, Algorithm 1 iterates between (27), (31), (33),
and (43)—(45), whereas Algorithm 2 iterates between (49), (50),
(51) and (57)—(59) until convergence. Finally, a few remarks are
needed for the calculation of the image and blur estimates. The
blur estimates in (31) and (50) can be calculated by assuming
block circulant with circulant sub-matrices (BCCB) matrices for
X and C, and finding the solutions in the Fourier domain, which
is very efficient [28]. However, finding closed form solutions for
the systems in (27) and (49) is practically very difficult because
the BCCB assumption is not valid due to W, and the high di-
mensionality of the matrices makes it hard to find the inverses.
Therefore, we find numerical solutions by using a gradient de-
scent (GD) algorithm which is very similar to the one proposed
in [26] with small modifications. Other numerical techniques,
such as conjugate gradient, can also be employed. Note that im-
proved convergence and speed can be achieved by utilizing pre-
conditioning methods (see, for example, [29] and [30]).

However, note that cov¥ (x) is explicitly needed to calculate
the quantities uf ™, cov¥(h), and Eqx (x)qr+1(m)[lly — Hx||?]
in Algorithm 1. Since calculating this matrix is computation-
ally very inefficient, we utilize an approximation to this inverse
which is proposed for the image restoration problem in [31],
where W (u*) in (26) is replaced by z(u*)I with z(u*) being
the mean value of the diagonal values in W (u*). Specifically

cov® (x) & (EX (B)EF (H)'EF (H) +E* (aim) 2(ub) (A7) (A")
FEM (i) 2(u?) (A)(AY))

=B~ (60)

With this approximation matrix, B becomes a BCCB matrix,
thus, computing its inverse can be performed in the Fourier do-
main. We, therefore, replace cov¥(x) by B~ in (30), (35), and
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(39). However, it should be noted that (60) is only used to cal-
culate trace matrix values and in (30). Our experiments indi-
cate that these values are very small when compared to other
terms, so the effect of this approximation is negligible. Note also
that this approximation is used only in Algorithm 1 and it is not
needed in Algorithm 2.

We conclude this section by analyzing two very important is-
sues: the convergence of the proposed algorithms and the close-
ness of the posterior approximations provided by algorithms 1
and 2 to the true posterior distribution of the unknown hyperpa-
rameters, image, and blur.

First we note that inequalities (15) and (16) provide the basis
for approximating the TV prior image distribution by a Gaussian
distribution in order to carry out analytical (not based on simu-
lation) Bayesian analysis. From (19), we have

M (a(®)) < M (q(©),u) (61)
and so algorithms 1 and 2 provide a sequence of distributions
{q*(©)} and a sequence of vectors {u*} that satisfy

M (¢¥(0),u*) > M (¢"(©),u 1) > M (¢"(0), u" 1) .
(62)
Notice that when we decrease the value of the posterior approx-
imation M (q(©), u**1), we obtain ¢*+1(©) which provides
a decreased upper bound of M (q**1(©)). Furthermore, mini-
mizing M (q*(©),u) with respect to u generates a new vector
u” that tightens the upper-bound of M (q*(©)). Consequently,
algorithms 1 and 2 provide sequences of ever decreasing
upper bounds. These sequences are bounded from below by
—log p(y) [see (13)], and, consequently, they converge.

Let us now examine the quality of the estimated posterior dis-
tributions. We only analyze here the type of the posterior distri-
bution approximation obtained by algorithm 1; the discussion
about algorithm 2 is very similar since in the iterative procedure
we only use the mean and do not take into account its uncer-
tainty. Inequality (15) provides a local quadratic approximation
to the TV prior. Using always u® with all its entries being equal
is equivalent to utilizing a fixed global conditional auto-regres-
sion model to approximate the TV image prior. Clearly, the pro-
cedure which updates u (even if all its components are the same)
will provide a tighter upper bound for M(q(0)).

Let us also comment on the proximity of the estimated pos-
terior distributions to the true posteriors. By using a different
majorization of TV(x) from the one used in inequality (15),
we obtain different approximations of the TV image prior. A
major advantage of the one used in the paper is that it results in
a quadratic approximation which is easy to analyze analytically.
The closeness of the variational approximation to the true poste-
rior in two or more dimensions is still an open question. Notice,
however, that we have proved the optimality, in the divergence
sense, of the obtained approximation among a given class of
Gaussian distributions. Insightful comments on when the varia-
tional approximation may be tight can be found in [32] (see also
[33] and [34]). A discussion on approximate Bayesian inference
using variational methods and its comparison with other bounds
can be found in [20].
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®

Fig. 2. (a) Lena image; degraded with a Gaussian shaped PSF with variance 9
and Gaussian noise of variance: (b) 0.16 (BSNR = 40 dB), (¢) 16 (BSNR =
20 dB), (d) Shepp-Logan phantom; degraded with a Gaussian shaped PSF with
variance 9 and Gaussian noise of variance: (e) 0.18 (BSNR = 40 dB), (f) 18
(BSNR = 20 dB).

IV. EXPERIMENTAL RESULTS

In this section, we present both synthetic and real blind decon-
volution examples to demonstrate the performance of the algo-
rithms. In the results reported below, we will denote Algorithm
1 by TVI, and Algorithm 2, where the distributions q(x) and
q(h) are both degenerate, by TV2. We compare our algorithms
with two other blind deconvolution algorithms based on varia-
tional approximations proposed in [7], which use SAR models
for both the image and the blur. These algorithms are denoted by
SARI and SAR2, where SARI provides an approximation to the
full posterior distribution of the image and the blur, and SAR2
assumes degenerate distributions. Comparing the proposed al-
gorithms with SARI and SAR2 provides a measure of the ef-
fectiveness of the proposed TV image prior, and also the perfor-
mance of the spatially adaptive deconvolution compared to non-
spatially adaptive restoration methods. In the synthetic experi-

TABLE I
ISNR VALUES AND NUMBER OF ITERATIONS FOR THE LENA, CAMERAMAN AND
SHEPP-LOGAN IMAGES DEGRADED BY A GAUSSIAN BLUR WITH VARIANCE 9

Lena Cameraman Shepp-Logan
BSNR | Method | ISNR (dB) iterations | ISNR (dB) iterations | ISNR (dB) iterations
40dB ™I 2.53 85 1.82 92 3.07 200
v2 295 200 1.73 200 3.36 200
SARI 1.35 63 1.03 66 1.20 121
SAR2 1.43 78 1.01 89 1.35 180
TVI-NB 4.33 9 2.96 11 4.16 28
TV2-NB 4.31 9 2.95 11 4.15 28
20dB vI1 2.62 81 1.70 5 247 8
V2 -32.50 500 -40.89 392 -23.88 476
SARI 1.62 80 1.16 98 1.53 146
SAR2 -11.32 54 -8.83 80 -6.59 29
TVI-NB 3.31 11 2.42 12 4.28 17
TV2-NB 3.29 11 2.41 12 4.27 17

ments, we also include the results from the nonblind versions
of our algorithms, where the blur is assumed to be known and
only the image and the hyperparameters are estimated during it-
erations. These nonblind algorithms will be denoted as TVI-NB
and TV2-NB.

For the first set of our experiments, “Lena,” “Cam-
eraman,” and “Shepp-Logan” phantom images are blurred
with a Gaussian-shaped function with variance 9, and white
Gaussian noise is added to obtain degraded images with
blurred-signal-to-noise ratios (BSNR) of 20 and 40 dB. The
original and degraded “Lena” images and “Shepp-Logan”
phantoms are shown in Fig. 2. The initial values for the TVI
and T'V2 algorithms are chosen as follows: The observed image
y is used as the initial estimate of x!, and a Gaussian function
with variance 4 as the initial estimate h' of the blur. The
covariance matrices cov!(h) and cov'(x) are set equal to zero.
The initial values 3', of,, and o} are calculated according
to (43)—(45), assuming degenerate distributions, and the initial
value u! is calculated using x* in (51). It should be emphasized
that except from the initial value of the blur, all parameters
are automatically estimated from the observed image. For the
SARI and SAR2 algorithms, the same initial blur is used, and
other parameters are calculated also automatically from the
observed image [7].

In this first set of experiments, we set all confidence pa-
rameters equal to zero, i.e., the observation is made fully
responsible for the estimation process. The quantitative
results are shown in Table I, where ISNR is defined as
10log;o(/lx — ylI?/|lx — %X||?), where x, y, and %X represent
the original, observed, and estimated images, respectively.
For all experiments, ||x* — x*=1||2/||x*~!|2 < 107° (or
EF(x) instead of x*) is used to terminate the algorithms, and
a threshold of 1075 is used to terminate the GD iterations.
The corresponding restoration results for the “Lena” image are
shown in Fig. 3 for the 40-dB BSNR case, and in Fig. 4 for the
20-dB BSNR case.

A few remarks can be made by examining the ISNR values in
Table I and the restorations visually. First, note that the nonblind
algorithms TVI-NB and TV2-NB result in higher ISNR values
than the blind ones, as expected, although the resulting images
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Fig. 3. Restorations of the Lena image blurred with a Gaussian PSF
with variance 9 and 40-dB BSNR using the (a) 7VI algorithm (ISNR =
2.53 dB), (b) TV2 algorithm (ISNR = 2.95 dB), (c) SAR! algorithm
(ISNR = 1.35 dB), (d) SAR2 algorithm (ISNR = 1.43 dB), (e) TVI-NB
algorithm (ISNR = 4.33 dB), and (f) 7V2-NB algorithm (ISNR = 4.31 dB).

are visually comparable. Secondly, algorithms 7V/ and TV2 re-
sult in higher ISNR values for all images and noise levels than
the SAR-based algorithms. Visually, the TV-based algorithms
result in sharper restorations, and in addition the ringing arti-
facts are reduced. Another important point is that algorithms
TV2 and SAR?2 fail to converge to successful restorations for
the 20-dB BSNR case. On the other hand, algorithms 7VI and
SARI result in acceptable restorations in this case. As can be
seen in Fig. 4(a) and (c), TV succeeds at removing the blur and
reducing the ringing artifacts providing a better restored image
than the SAR/ algorithm.

The differences between the TV-based and SAR-based al-
gorithms are clearer in the restoration of the Shepp—Logan
phantom, which are shown in Fig. 5 for the 40-dB BSNR
case, and in Fig. 6 for the 20-dB BSNR case. Algorithms
TVI and TV2 clearly outperform the SAR algorithms in terms
of preserving and recovering the edges, whereas the ringing

Fig. 4. Restorations of the Lena image blurred with a Gaussian PSF with vari-
ance 9 and 20-dB BSNR using the (a) TVI algorithm (ISNR = 2.62 dB),
(b) TV2 algorithm (ISNR = —32.50 dB), (c) SAR! algorithm (ISNR =
1.62 dB), (d) SAR2 algorithm (ISNR = —11.32 dB), (e) TVI-NB algorithm
(ISNR = 3.31 dB), and (f) TV2-NB algorithm (ISNR = 3.29 dB).

artifacts are more visible at 40-dB BSNR than at 20-dB BSNR.
Again, algorithms 7V2 and SAR?2 fail to converge to meaningful
restorations for the 20-dB BSNR case. Note that in other cases
the restorations by 7VI and TV2 are very close to nonblind
restoration results, except for some ringing artifacts resulting
from estimation errors in the PSF.

A possible reason that algorithms 7V2 and SAR?2 fail to pro-
vide meaningful restorations for the 20-dB BSNR case is the
lack of the uncertainty terms cov®(h) and cov¥*(x) in (49) and
(50), respectively. In this case, the matrices that are inverted in
(49) and (50) become worse conditioned than the matrices being
inverted in algorithms TV1 [in (26) and (30)] and SARI, thus
degrading the quality of the restorations.

We note here that the proposed algorithms are quite robust
to the initial selected value of the blur. When a Gaussian with
variance 2 is chosen as h!, the ISNR values are 1.80 dB for TVI
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(e) ®

Fig. 5. Restorations of the Shepp-Logan phantom blurred with a Gaussian
PSF with variance 9 and 40-dB BSNR using the (a) TVI algorithm
(ISNR = 3.07 dB), (b) TV2 algorithm (ISNR = 3.36 dB), (c) SARI
algorithm (ISNR = 1.20 dB), (d) SAR2 algorithm (ISNR = 1.35 dB),
(e) TVI-NB algorithm (ISNR = 4.16 dB), and (f) TV2-NB algorithm
(ISNR = 4.15 dB).

and 2.75 dB for TV2 for 40-dB BSNR, and 1.71 for 7VI and
—33.36 dB for TV2 for 20-dB BSNR, similarly to the results in
Table I.

One-dimensional slices through the origin of the estimated
blurs for all algorithms corresponding to the restoration of the
“Lena” image are shown in Fig. 7. It is clear that all algorithms
provide accurate estimates of the true PSF for both noise levels.
As already mentioned, 7V2 and SAR?2 fail to converge to mean-
ingful PSF and image estimates at 20-dB BSNR.

Before proceeding with the next set of experiments, we com-
pare the SAR blur prior with the TV prior on the blur, as used
in [5]. The algorithms proposed in [5] and [15] place TV priors
both on the unknown image and blur and follow a regulariza-
tion-based restoration procedure to estimate them. The hyperpa-
rameters are selected manually for optimal performance. There-
fore, to facilitate a comparison between these algorithms and

(e) ®

Fig. 6. Restorations of the Shepp—Logan phantom blurred with a Gaussian
PSF with variance 9 and 20-dB BSNR using the (a) TV algorithm (ISNR =
2.47 dB), (b) TV2 algorithm (ISNR = —23.88 dB), (c) SARI algorithm
(ISNR = 1.53 dB), (d) SAR?2 algorithm (ISNR = —6.59 dB), (e) TVI-NB
algorithm (ISNR = 4.28 dB), and (f) 7V2-NB algorithm (ISNR = 4.27 dB).

the proposed ones, which estimate the hyperparameters from
the observed data, we calculate the optimal parameters from the
original image and blur. Obviously, this is impossible in a prac-
tical setting, but it provides the best possible restoration result
that can be obtained by [5]. The restored images are shown in
Fig. 8(a) and (b) for the BSNR = 40 dB and BSNR = 20 dB
cases, respectively. The corresponding ISNR values are 2.18 dB
at 500 iterations and 2.26 dB at 79 iterations. One-dimensional
slices through the origin of the estimated blurs for these cases
are shown in Fig. 8(c). We note here that although the ISNR
values are comparable with the ones resulting from the pro-
posed algorithms reported in Table I, it is clear by examining
Fig. 8 that at both noise levels the algorithm fails to identify and
remove the blur accurately, and, therefore, the restored images
are still blurry. The ISNR improvement can be attributed to the
denoising performed by the TV prior on the image. The con-
vergence is extremely slow in the BSNR = 40 dB case. In the
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Fig. 7. One-dimensional slices through the origin of the original and estimated PSFs in the restoration of the Lena image degraded by a Gaussian with variance 9
and (a) BSNR = 40 dB, and (b) BSNR = 20 dB, with algorithms 7V1, TV2, SARI, and SAR2.
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Fig. 8. Restorations of the Lena image blurred with a Gaussian PSF with
variance 9 using a TV blur prior and fixed optimal parameters as in [5].
(a) Restoration at 40-dB BSNR (ISNR, = 2.18 dB), (b) restoration at 20-dB
BSNR (ISNR = 2.26 dB), (c) estimated blur PSFs.

BSNR = 20 dB case, the estimated PSF is very similar to an
out-of-focus blur, indicating that the algorithm fails to identify
the smooth nature of the PSF. These results are also in agree-
ment with the ones reported in [5]. Based on the above, it is rea-
sonable to conclude that for smooth PSFs such as a Gaussian,
the proposed algorithms with the SAR blur prior outperform al-
gorithms utilizing a TV blur prior, given also the fact that all
required parameters are calculated from the observed image in
an automated fashion.

In the second set of experiments, we tested the algorithms
with a less severe blur. The images are blurred with a Gaussian

TABLE II
ISNR VALUES AND NUMBER OF ITERATIONS FOR THE LENA, CAMERAMAN AND
SHEPP-LOGAN IMAGES DEGRADED BY A GAUSSIAN BLUR WITH VARIANCE 5

Lena Cameraman Shepp-Logan
BSNR | Method | ISNR (dB) iterations | ISNR (dB) iterations | ISNR (dB) iterations
40dB TvI 3.19 200 1.66 73 2.05 137
V2 3.29 115 2.49 58 3.79 200
SARI 1.26 53 0.90 53 1.24 157
SAR2 1.45 77 0.99 86 1.51 200
TVI-NB 4.98 10 3.50 12 7.57 43
TV2-NB 4.93 10 3.48 12 729 39
20dB vI 1.39 189 1.43 136 2.09 200
v2 -45.20 436 -42.54 297 -26.00 478
SARI 1.14 87 0.87 76 1.24 200
SAR2 -13.15 55 -10.02 73 -7.87 27
TVI-NB 2.92 10 2.40 12 4.68 16
TV2-NB 2.83 11 2.37 12 4.65 16

shaped PSF with variance 5, and the initial estimate of the blur,
h', is a Gaussian PSF with variance 2. The corresponding ISNR
values of the restorations are shown in Table II. As expected, all
algorithms provide better restorations in this case, although the
noise variances are higher compared to the first set of experi-
ments to obtain the same BSNRs. Similarly to the first experi-
ment, algorithms 7V and TV2 result in better restoration per-
formance both in terms of ISNR and visual quality.

Before proceeding with the next experiment, an important ob-
servation has to be made. We noticed in our experiments that
the quality of the estimation of u is a very important factor in
the performance of the algorithms. For example, in the case of
“Lena” with BSNR = 40 dB and Gaussian PSF with variance
5, if we run the algorithms 7VI and TV2 by calculating u from
the original image, we obtain ISNR values of 3.52 and 3.60 dB,
respectively. Other cases showed similar improvements. Thus,
knowledge about this parameter greatly improves the ISNR per-
formance (a similar conclusion is drawn in [26] and [31]). This
also confirms that the decrease in the performance of the algo-
rithms in the presence of high noise, e.g., BSNR = 20 dB, is
due to the fact that the spatial variations in the image; hence, the
parameter u, cannot be estimated well. This is also observed in
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Fig. 9. ISNR evolution for different values of the confidence parameters for Algorithm 1 (7V1) applied to the “Lena” image degraded by a Gaussian with variance
9 and BSNR = 40 dB. (a) For fixed 75 = 0, (b) for fixed 7a,, = 0, (c) for fixed 7,,,, = 0, and (d) for fixed v5 = 1.

[35] and several solutions are proposed for TV image restora-
tion. In this work, we adapted a simple smoothing of the gra-
dient of the image with a small Gaussian PSF (with variance 1)
which largely improves both the performance and the conver-
gence of the algorithms. Therefore, it is safe to claim that in high
noise-cases, incorporating robust gradient estimation methods,
such as [35] and [36], will further improve the performance of
the proposed algorithms.

We now examine the effect of prior information on the per-
formance of the proposed algorithms in the third set of experi-
ments. Generally, some information about the values of the hy-
perparameters is available and can be utilized in the restoration
to improve performance. For instance, the noise variance can be
estimated quite accurately when a part of the image has uniform
color. The image variance is more difficult to estimate from a
single degraded observation. However, a set of images with sim-
ilar characteristics can be used to acquire an estimate for this pa-
rameter. If an estimate of the image variance can be provided,
the PSF variance can be approximated using this value (see [37]
for details).

In addition to the prior knowledge on the hyperparameters,
constraints on the blur estimates can also be imposed. Positivity
and symmetry constraints are the most common ones, and it is
known that they can significantly improve the convergence of
the algorithms and the quality of the estimates [5]. Although
such hard constraints have not been directly incorporated in our
Bayesian framework, they can in practice improve the restora-
tion results of the proposed algorithms 7VI and TV2 as shown
experimentally next.

For simulation purposes, we calculated the values of the hy-
perparameters from the original image and PSF to be used as
prior hyperparameter values. Then, using these prior values, we
applied TV1I to the “Lena” image degraded by a Gaussian PSF

TABLE III
POSTERIOR MEANS OF THE DISTRIBUTIONS OF THE HYPERPARAMETERS, ISNR,
AND NUMBER OF ITERATIONS USING 7V FOR THE LENA IMAGE WITH 40-dB
BSNR USING @i, ° = 0.042, @n® = 4.6 x 108, AND 3° = 6.25, FOR

DIFFERENT VALUES OF Yo, s Yoy, AND 73.
Yaim Yo 8 | Plaim]  Elap] E[B] | ISNR (dB) | iterations
0 0 0 0.088 3.3x 108 5.63 3.65 32
0 1 0 0.086 4.6 x 108 5.62 3.85 38
1 1 0 0.041 4.6 x 108 575 3.90 51
1 0 0 0.041 3.7x 10° 576 3.80 51
0.6 1 0 0.051 46x10% 572 3.92 45
0.8 1 1 0.046 4.6x 108 625 3.80 82

and 40-dB BSNR with varying confidence parameters and ob-
tained the ISNR evolution graphs shown in Fig. 9. To show
the improved restoration performance and the best achievable
ISNR, we applied positivity and symmetry constraints to the
estimated PSF at each iteration as in [5]. Additionally, the sup-
port of the blur is estimated at each iteration using the first zero-
crossing of the PSF from its center, and values outside this esti-
mated support are set equal to zero. Selected ISNR values from
these graphs with the estimated hyperparameters are shown in
Table III. We included cases corresponding to the best ISNR
values when (a) information about the noise variance is avail-
able, (b) information about only the PSF variance is available,
(c) information about only the image variance is available, and
(d) information about all hyperparameters is available. It is clear
that if some information on the hyperparameters is available,
biasing the algorithm towards these hyperparameters leads to
improved ISNR values. However, it is interesting that incorpo-
rating the knowledge about the true value of the noise variance
decreases the quality of the restorations; thus, it is better to put
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(©) (d)

Fig. 10. Some restorations of the Lena image blurred with a Gaussian PSF with variance 9 and 40-dB BSNR using the 7V algorithm utilizing prior knowledge

through confidence parameters and positivity and support constraints on the estimated blur. (a) Yo, = Va,, = 78 = 0.0 (ISNR = 3.65 dB), (b) 7o,
Yap = 1,78 = 0 (ISNR = 3.85 dB), (¢) Ya;,, = 0-6,%a,, = 1,73 = 0 (ISNR = 3.92 dB), and (d) 7,
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Fig. 11. One-dimensional slices through the origin of the original and esti-
mated PSFs in the restoration of the Lena image degraded by a Gaussian with
variance 9 and BSNR = 40 dB with algorithm 7V1. (a) True PSF, Estimated
PSF with (b) 7o, = Yap = V8 = 0.0, (¢) Yaim = 0, Yoy = 1,9 =0,

(d) Yoy, = 06,94y, =1,75 = 0,and () va,,, =0.8,7a,, = 1,75 = 1.

im

no confidence on this parameter and let the algorithms adap-
tively select it at each iteration. On the other hand, we note that at
convergence, the E£*(3)~! almost always converged to a value
very close to the noise variance.

It should also be emphasized that the most critical hyperpa-
rameter is ay,. It is clear from Fig. 9 and Table III that incor-
porating information about this parameter greatly increases the
performance of the algorithm, and that the best ISNR is achieved
when v, = 1isused. Restoration results with these confidence
parameters are shown in Fig. 10. Note that the restoration quality
is almost as high as the one achieved by the nonblind algorithms
[see Fig. 3(e) for comparison]. One-dimensional slices of the es-
timated blurs corresponding to these cases are shown in Fig. 11,
where it can be seen that the estimated PSFs are much closer to
the true PSF than the ones in Fig. 7. Overall, it is clear from the
results that, as expected, the performance of the algorithms can
be largely increased when some information about these hyper-
parameters is provided and certain constraints on the estimated
blur are imposed.

In our last set of experiments, the algorithms are applied to a
real image of Saturn, which was taken at the Calar Alto Observa-
tory in Spain, shown in Fig. 12(a). There is no exact expression

1m = 0’

=0.8,%,, =1L =1 (ISNR = 3.80 dB).

im

(a) (b) (©)

(d) © ®

Fig. 12. (a) Observed saturn image, (b) nonblind restoration with TV2-NB,

(c) restoration with TV2 with 7o, = = Ya,, = 73 = 0.0, (d) restoration with
TVI with 7., = 0.8, Yoy = 0.1, and v3 = 0.8; (e) restoration with TV2
with Yoy = 0.8, Yoy, = 0.1, and 75 = 0.8; (f) restoration with SARI with

Yoim = 0.8, Yap = 0.1,and vz = 0.8.

for the shape of the PSF for this image; however, the following
approximation is suggested in [38] and [39]
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Fig. 13. One-dimensional slices through the origin of the theoretical and esti-
mated PSFs in the restoration of the Saturn image. Estimated PSF (a) using 7V2
with ya, =~ = = 75 = 0.0, and with 7,, = 0.8, 7., = 0.1, and
vs = 0.8 usmg (b) SARI, (c) TVI and (d) TV2.

r2\7°
h(r) o (1 + ﬁ) (63)
with § = 3 and R = 3.4. The nonblind restoration result using
TV2-NB with this theoretical PSF is shown in Fig. 12(b). This
image is restored first by 7V/I and TV2 with zero confidences
placed on the prior values, i.e., Yq,, Yoo 78 = 0.
The initial blur is selected as a Gaussian shaped PSF with vari-
ance 1. Our experiments show that 7V2 gives a reasonably good
restoration result, shown in Fig. 12(c), whereas TVI does not
adequately remove the blur.

However, as in the previous experiment, the quality of the
restorations can be improved by utilizing prior knowledge
about the parameters. We used 3~ = 8.16, a), = 0.24,
and @, = 1.6 x 10® as prior hyperparameter values, which
are obtained by running 7V2-NB with the PSF in (63). By
selecting ¥o,,, = 0.8, ¥4, = 0.1, and y3 = 0.8, we obtain the
restorations shown in Fig. 12(d) with TV and Fig. 12(d) with
TV2. As a comparison, the restoration result with SARI with
the same confidence parameters is shown in Fig. 12(e). Note
that TV-based approaches are more successful at removing the
blur while providing smooth restorations with less ringing.
The estimated PSFs corresponding to these cases as well as
the theoretical PSF is shown in Fig. 13. It is clear that the
estimated PSFs by the proposed algorithms are much closer to
the theoretical PSF than the SAR! result, even when no prior
knowledge is incorporated.

We conclude this section by commenting on the computa-
tional complexity of the algorithms. The proposed algorithms
are computationally more intensive than SAR-based restoration
methods since (27) and (49) cannot be solved by direct inver-
sion in the frequency domain and iterative numerical approaches
are needed. Typically, the MATLAB implementations of our al-
gorithms required on the average about 20 s per iteration on a
3.20-GHz Xeon PC for 256 x 256 images. Note that the running
time of the algorithms can be improved by utilizing precondi-
tioning methods (see, for example, [29] and [30]), or splitting
techniques [40].

V. CONCLUSION

In this paper, we presented a novel TV-based blind de-
convolution methodology where the unknown image, blur
and the hyperparameters are estimated simultaneously. The
blind deconvolution problem is formulated using a hierar-
chical Bayesian model, and variational inference is utilized
to approximate the posterior distributions of the unknown
parameters rather than point estimates. Approximating the
posterior distribution makes evaluating the uncertainty of the
estimates possible. Two algorithms are provided resulting
from this approach. It is shown that the unknown parameters
of the Bayesian formulation can be calculated automatically
using only the observation or using also prior knowledge with
different confidence values to improve the performance of
the algorithms. Experimental results demonstrated that the
proposed approaches result in high-quality restorations in both
synthetic and real image experiments.
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