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ABSTRACT
In this paper we propose novel algorithms for total varia-
tion (TV) based blind deconvolution and parameter estima-
tion utilizing a variational framework. Within a hierarchi-
cal Bayesian formulation, the reconstructed image, the blur
and the unknown hyperparameters for the image prior, the
blur prior and the image degradation noise are simultane-
ously estimated. We develop two algorithms resulting from
this formulation which provide approximations to the poste-
rior distributions of the latent variables. Different values can
be drawn from these distributions as estimates to the latent
variables and the uncertainty of these estimates can be mea-
sured. Experimental results are provided to demonstrate the
performance of the algorithms.

1. INTRODUCTION

The general discrete model for a linear degradation caused by
blurring and additive noise can be expressed in matrix-vector
form as

y = Hx+n, (1)

where x, y, and n represent the original image, the observed
image, and the noise, respectively, all ordered lexicographi-
cally. The general objective of blind deconvolution is to es-
timate x and H based on y and prior knowledge about these
unknown quantities and the noise.

Approaches to the blind deconvolution problem can in
general be classified into two categories based on the stage
where the blur is identified [1]. In the first category, that
of a priori blur identification methods, the blur is identified
separately from the image, and later used in one of the clas-
sical image restoration algorithms to obtain estimates for the
image. The majority of the existing methods fall in the sec-
ond category, consisting of joint blur identification and image
restoration methods. Most methods in this category incorpo-
rate prior knowledge about the image and blur in a determin-
istic or stochastic formulation [1].

Methods based on the Bayesian formulation are of the
most commonly used methods in the blind deconvolution lit-
erature. Such methods introduce prior models on the image,
blur, and their model parameters, which impose constraints
on the estimates and act as regularizers. Simultaneous Au-
toregression (SAR), Conditional Autoregression (CAR), and
Gaussian models are some of the commonly used priors for
the image and blur.

Recently there has been an interest in applying varia-
tional methods to the blind deconvolution problem. These
methods attempt to obtain approximations to the posterior

distributions on the unknowns with the use of the Kullback-
Leibner cross entropy [2]. Miskin and Mackay [3], Adami
[4], Likas and Galatsanos [5], and Molina et. al. [6] em-
ploy this variational methodology to the blind deconvolution
problem in a Bayesian formulation.

In this paper we also apply variational methods to the
blind deconvolution problem, by proposing to use a Total
Variation (TV) function as the image prior, and a SAR model
for the blur. Although the TV model has been used in blind
deconvolution before (see, for example, [7]), to our knowl-
edge no work has been reported on the simultaneous estima-
tion of the model parameters, image, and blur in TV-based
variational blind deconvolution. We develop two new varia-
tional methods based on a hierarchical Bayesian formulation,
and provide approximations to the posterior distributions of
the image, blur, and model parameters, which allow us to
efficiently estimate the unknowns and also analyze their un-
certainties.

This paper is organized as follows: In Sec. 2 we present
the hierarchical Bayesian model and the priors on the un-
known quantities. Section 3 describes the variational ap-
proximation method utilized in the Bayesian inference. We
present our experimental results in Sec. 4 and conclusions
are drawn in Sec. 5.

2. HIERARCHICAL BAYESIAN MODELING

In the first stage of the Bayesian formulation, we model the
observation process, the image, and the blur. Assuming the
degradation noise is additive and Gaussian, the probability
distribution of the observation in Eq. (1) can be expressed as

p(y|x,h,β ) ∝ β
N/2 exp

[
−β

2
‖ y−Hx ‖2

]
, (2)

where β−1 is the noise variance and h is the impulse response
of the linear space-invariant degradation system, which is
used in forming the block-circulant matrix H. We adopt the
TV function for the image prior, that is,

p(x|αim) ∝
1

ZTV(αim)
exp [−αimTV(x)] , (3)

where ZTV(αim) is the partition function and α
−1
im is the im-

age variance. The TV function is defined as

TV(x) = ∑
i

√
(∆h

i (x))2 +(∆v
i (x))2, (4)

where the operators ∆h
i (x) and ∆v

i (x) correspond to, respec-
tively, the horizontal and vertical first order differences, at



pixel i, that is, ∆h
i (x) = xi− xl(i) and ∆v

i (x) = xi− xa(i), with
l(i) and a(i) denoting the nearest neighbors of i, to the left
and above, respectively. As shown in [8], this prior can be
approximated by

p(x|αim) = const× α
N/2
im exp [−αimTV(x)] , (5)

where N is the total number of pixels in the image. We use
the SAR model for the prior on blur, that is,

p(h|αbl) ∝ α
M/2
bl exp

{
−1

2
αbl ‖Ch ‖2}, (6)

where C denotes the Laplacian operator, α
−1
bl is the variance

of the Gaussian distribution, and M is the support of the blur,
which is assumed to be the same as the image support.

The model parameters αim, αbl, and β are referred to as
the hyperparameters, and are important in determining the
performance of the algorithms to a great extent. They are
in general not known, and thus we introduce a second stage
in the Bayesian formulation and assume that each of these
hyperparameters has a hyperprior. In this paper we utilize
the gamma distribution as their hyperprior, defined by

p(ω) = Γ(ω|ao
ω ,bo

ω) =
(bo

ω)−ao
ω

Γ(ao
ω)

ω
ao

ω−1 exp
[
− ω

bo
ω

]
, (7)

where ω > 0 denotes a hyperparameter, bo
ω > 0 is the scale

parameter, and ao
ω > 0 is the shape parameter, both of which

are assumed to be known and introduce our prior knowl-
edge on the hyperparameters. We discuss the selection of
the shape and scale parameters in the experimental section.
The gamma distribution has the following mean, variance
and mode:

E[ω] = ao
ω bo

ω , Var[ω] = ao
ω(bo

ω)2,

Mode[ω] = (ao
ω −1)bo

ω . (8)

3. BAYESIAN INFERENCE AND VARIATIONAL
APPROXIMATION OF THE POSTERIOR

DISTRIBUTIONS

We denote the set of all the hyperparameters introduced in
the previous section by Ω = (αim,αbl,β ) and the set of all
unknowns by Θ = (Ω,x,h) = (αim,αbl,β ,x,h). Combining
the first and second stage of the Bayesian model we obtain
the following joint distribution

p(αim,αbl,β ,x,h,y)
= p(αim,αbl,β )p(x|αim)p(h|αbl)p(y|x,h,β ).

The inference on (αim,αbl,β ,x,h) should be based on

p(Θ | y) = p(αim,αbl,β ,x,h|y) =
p(αim,αbl,β ,x,h,y)

p(y)
,

Since it is not possible to directly evaluate p(Θ|y), fol-
lowing the variational methodology, it is approximated by
q(Θ), which can be found by minimizing the Kullback-
Leibler divergence, given by [9, 2]

CKL(q(Θ) ‖ p(Θ|y)) =
∫

Θ

q(Θ) log
(

q(Θ)
p(Θ|y)

)
dΘ

=
∫

Θ

q(Θ) log
(

q(Θ)
p(Θ,y)

)
dΘ+ const. (9)

Assuming statistical independence of the latent vari-
ables, we have that q(Θ) = q(Ω)q(x)q(h), where q(Ω) =
q(αim)q(αbl)q(β ).

The use of the TV prior makes the integral in Eq. (9)
difficult to evaluate. Therefore, we utilize a minorization of
the TV prior which renders this integral easier to evaluate.
Let us define the following functional M(αim,x,v), for α , x,
and an N−dimensional vector v ∈ (R+)N

M(αim,x,v)

= const×α
N/2
im exp

[
−αim

2 ∑
i

(∆h
i (x))2 +(∆v

i (x))2 + vi√
vi

]
.

(10)

Using the following inequality in [8] for u≥ 0 and v > 0

√
u≤

√
v+

1
2
√

v
(u− v). (11)

we have that

exp[−αimTV(x)]= exp

[
−αim ∑

i

√
(∆h

i (x))2 +(∆v
i (x))2

]

≥ exp

[
−αim

2 ∑
i

(∆h
i (x))2 +(∆v

i (x))2 + vi√
vi

]
. (12)

Combining Eqs. (5), (10), and (12) we obtain the following
lower bound for the image prior

p(x|αim) ≥ const× M(αim,x,v), (13)

and the following lower bound for the joint probability dis-
tribution

p(Θ,y) ≥ p(Ω)M(αim,x,v)p(h|αbl)p(y|x,h,β )
= F(Θ,v,y). (14)

For θ ∈ {αim,αbl,β ,x,h} let us denote by Θθ the sub-
set of Θ with θ removed; for instance, if θ = x, Θx =
(αim,αbl,β ,h). Then, utilizing Eq. (14), Eq. (9) can be writ-
ten as

CKL(q(Θ) ‖ p(Θ|y))≤CKL(q(Θ) ‖ F(Θ,v,y))

=
∫

θ

q(θ)
(∫

Θθ

q(Θθ ) log
(

q(θ)q(Θθ )
F(Θ,v,y)

)
dΘθ

)
dθ . (15)

We can utilize this upper bound to find estimates of the
posterior distributions in an alternating fashion, that is, given
q(Θθ ), the posterior q(θ) can be computed by solving

q(θ) = argmin
q(θ)

CKL(q(Θθ )q(θ) ‖ F(Θ,v,y)). (16)

Differentiation of the integral on the right hand side in
Eq. (15) with respect to q(θ) results in (see Eq. (2.28) in
[10]),

q̂(θ) = const× exp
(

E [ logF(Θ,v,y) ]q(Θθ )

)
, (17)

where

E [ logF(Θ,v,y) ]q(Θθ ) =
∫

logF(Θ,v,y)q(Θθ )dΘθ .



Applying this minimization to each unknown in an alternat-
ing way we obtain the following iterative procedure to find
q(Θ):

Algorithm 1 Given q1(h), q1(αim), q1(αbl), and q1(β ) the
initial estimates of the distributions q(h), q(αim), q(αbl) and
q(β ),
for k = 1,2, . . . until a stopping criterion is met:
1. Find

qk(x) = argmin
q(x)

∫
x

∫
Θx

qk(Θx)q(x)

× log
(

qk(Θx)q(x)
F(Θk

x,x,vk,y)

)
dΘxdx (18)

2. Find

qk+1(h) = argmin
q(h)

∫
h

∫
Θh

qk(Θh)q(h)

× log

(
qk(Θh)q(h)

F(Θk
h,h,vk,y)

)
dΘhdh (19)

3. Find

vk+1 = argmin
v

∫
Θ

qk(Θh)qk+1(h)

× log

(
qk(Θh)qk+1(h)

F(Θk
h,h

k+1,v,y)

)
dΘ (20)

4. Find

qk+1(Ω) = arg min
q(Ω)

∫
Ω

∫
ΘΩ

qk(ΘΩ)q(Ω)

× log
(

qk(ΘΩ)q(Ω)
F(Θk

Ω
,Ω,vk,y)

)
dΘΩdΩ (21)

Now we proceed to state the solutions at each step of the
algorithm (Eqs. (18)-(21)) explicitly. In estimating q(x) and
q(h) we assume that the hyperparameters Ω are known. From
Eq. (17) it is clear that qk(x) is an N-dimensional Gaussian
distribution, rewritten as,

qk(x) = N
(
x | Ek(x),covk(x)

)
.

The covariance and mean of this normal distribution can be
calculated from Eq. (18) as

covqk(x)[x] =
(
β

kEk(H)tEk(H)+β
kcovk(h)+

α
k
im(∆h)

t
W (vk)(∆h)+α

k
im(∆v)tW (vk)(∆v)

)−1
, (22)

Eqk(x)[x] = covqk(x)[x]β kEk(H)ty, (23)

where W (v) is the N×N diagonal matrix of the form

W (v) = diag

 1√
vk

i

 , i = 1, . . . ,N (24)

Similarly to qk(x), qk(h) is an M-dimensional Gaussian dis-
tribution, given by

qk+1(h) = N
(

h | Ek+1(h),covk+1(h)
)

, (25)

with

covk+1(h) =
(
α

k
blC

tC +β
kEqk(x)[x]tEqk(x)[x]

+β
kcovqk(x)[x]

)−1
, (26)

and
Ek+1(h) = covk+1(h)β kEqk(x)[x]ty, (27)

Next we find vk+1 at step 4 of the algorithm as

vk+1
i = Eqk(x)[(∆

h
i (x))2 +(∆v

i (x))2], i = 1, . . . ,N. (28)

After finding estimates of the posterior distributions of
the image and blur, we find the estimates for the hyperpri-
ors at the last step of the algorithm. For ω ∈ {αim,αbl,β},
evaluating Eq. (21) using Eq. (17) results in

qk+1(ω) ∝ expEqk(x)qk+1(h)q(Ωω )[logF(Ωk
ω ,ω,xk,hk+1,vk+1,y)].

Evaluating this explicitly we obtain

E [logF(Θ) ]qk(x)qk+1(h) = const

+ ∑
ω∈{αim,αbl,β}

((ao
ω −1) logω−ω/bo

ω)

+
N
2

logαim +
M
2

logαbl +
N
2

logβ

− 1
2

αimE

[
∑

i

(∆h
i (x))2 +(∆v

i (x))2 + vi√
vi

]
qk(x)

− 1
2

αblE
[
‖Ch ‖2]

qk+1(h)−
1
2

βE
[
‖ g−H f ‖2]

qk(x)qk+1(h) ,

(29)

where

E

[
∑

i

(∆h
i (x))2 +(∆v

i (x))2 + vi√
vi

]
qk(x)

= 2∑
i

√
vk+1

i ,

E
[
‖Ch ‖2]

qk+1(h) =‖CEk+1(h) ‖2 +trace(CtCcovk(h)),

and

E
[
‖ g−Hx ‖2]

qk(x)qk+1(h) =‖ g−Ek+1(h)Ek(x) ‖2

+ trace(covk(x)covk+1(h))+ trace(Ek(x)tEk(x)covk+1(h))

+ trace(Ek+1(H)tEk+1(H)covk(x)).

It can be seen from Eq. (29) that all hyperparameters have
gamma distributions, given by

qk+1(αim) ∝ α
N/2+ao

αim
−1

im

×exp

[
−αim(1/bo

αim
+∑

i

√
vk+1

i )

]
,



qk+1(αbl) ∝ α
M/2+ao

αbl
−1

bl

×exp

[
−αbl(1/bo

αbl
+

E
[
‖Ch ‖2

]
qk+1(h)

2
)

]
,

qk+1(β ) ∝ β
N/2+ao

β
−1

× exp

[
−β (1/bo

β
+

E
[
‖ g−Hx ‖2

]
qk(x)qk+1(h)

2
)

]
,

where the shape and scale parameters ak+1
ω and bk+1

ω of the
gamma distributions are given by (see Eq. (7))

ak+1
αim

= ao
αim

+
N
2

, (30)

(bk+1
αim

)−1 =
1

bo
αim

+∑
i

√
vk+1

i , (31)

ak+1
αbl

= ao
αbl

+
M
2

, (32)

(bk+1
αbl

)−1 =
1

bo
αbl

+
E
[
‖Ch ‖2

]
qk+1(h)

2
, (33)

ak+1
β

= ao
β

+
N
2

, (34)

(bk+1
β

)−1 =
1

bo
β

+
E
[
‖ g−Hx ‖2

]
qk(x)qk+1(h)

2
. (35)

The means of these gamma distributions can be found using
Eq. (8). However, we choose to represent them as follows

(E[αim]qk+1(αim))
−1 = γαim

1
α

o
im

+(1−γαim)
∑i

√
vk+1

i

N/2
, (36)

E[αbl]−1
qk+1(αbl)

= γαbl

1
α

o
bl

+(1− γαbl)
E
[
‖Ch ‖2

]
qk+1(h)

M
,

(37)

(E[β ]−1
qk+1(β ) = γβ

1

β
o +(1− γβ )

E
[
‖ g−H f ‖2

]
qk(x)qk+1(h)

N
,

(38)
where α

o
im = ao

αim
/bo

αim
, αbl = ao

αbl
/bo

αbl
and β

o
= ao

β
/bo

β
and

γαim =
ao

αim

ao
αim

+ N
2

, γαbl =
ao

αbl

ao
αbl

+ M
2

, γβ =
ao

β

ao
β

+ N
2

.

The parameters γαim ,γαbl , and γβ can be understood as
normalized confidence parameters, taking values in the in-
terval (0,1). When they are asymptotically equal to zero no
confidence is placed on the initial values of the hyperparam-
eters, whereas a value asymptotically equal to one will result
in no update on the hyperparameters, so that the algorithm
will fully rely on the given initial parameters.

In algorithm 1 no assumptions were imposed on the pos-
terior approximations q(x) and q(h). We can, however, as-
sume that these distributions are degenerate, i.e., distribu-
tions which take one value with probability one and the rest

of the values with probability zero. We obtain another algo-
rithm under this assumption which is similar to algorithm 1,
except that the covariance matrices in the update equations
are set equal to zero matrices. Note that in this second algo-
rithm, the value of the KL divergence is again decreased at
each update step, but not by the maximum possible amount
as was the case in algorithm 1 .

As a final remark, we would like to note that the esti-
mate of the image in Eq. (23) is computed iteratively, with
the use of a conjugate gradient or gradient descent method.
However, covqk(x)[x] is explicitly needed in the estimation
of the blur (Eq. (26)) and the hyperparameters. We propose
the approximation W (vk)≈ z(vk)I, where

z(vk) =
1
N ∑

i

1√
vk

i

. (39)

We can therefore obtain a form of covqk(x)[x] that can be
represented by a block circulant matrix with circulant blocks
(BCCB), whose inverse can be computed in the Fourier do-
main.

4. EXPERIMENTAL RESULTS

A number of experiments have been performed with the pro-
posed methods. We will denote algorithm 1 as TV1, and the
second algorithm, where the distributions q(x) and q(h) are
both degenerate, as TV2. We present two sets of experiments
with different selections of the confidence parameters γαim ,
γαbl , γβ .

For our experiments, the image ”Lena” is blurred with a
Gaussian-shaped function and white Gaussian noise is added
to obtain degraded images with blurred-signal-to-noise ratios
(BSNR) of 20, 30 and 40dB. For comparison, we include the
results from the non-blind versions of our algorithms, where
the blur function is known and only the image and the hyper-
parameters are estimated during iterations. These algorithms
will be denoted as TV1-NB and TV2-NB. We also compare
our algorithms to another blind deconvolution method based
on variational approximations, which uses SAR-models for
both the image and the blur (see [6] for details). We will
denote these algorithms as SAR1 and SAR2.

The initial values for the TV1 and TV2 algorithms are
chosen as follows: The observed image is used as the ini-
tial estimate of Eq1(x)[x], and as for the initial estimate of
Eq1(h)[h] we chose a Gaussian function with variance 4. The
covariance matrices cov1(h) and cov1(x) are set equal to
zero. The initial values E1[β ], E1[αim], and E1[αbl] are cal-
culated according to Eqs. (36)–(38), assuming degenerate
distributions. Note that, except for the initial values of the
image and blur, all parameters are automatically estimated
from the observed image. For the SAR1 and SAR2 algo-
rithms, the same initial blur is used, and other parameters
are found also automatically from the observed image [6].

In the first set of experiments, we set all confidence pa-
rameters equal to zero, i.e, the observation is made fully re-
sponsible for the estimation process. The quantitative results
are shown in Table 1, where ISNR is defined as 10log10(‖
x− y ‖2 / ‖ x− x̂ ‖2), where x, y and x̂ are the original, ob-
served, and estimated images, respectively. As expected, the
TV1-NB and TV2-NB algorithms result in higher ISNR val-
ues since the blur is assumed to be known. The proposed al-
gorithms result in higher ISNR values than SAR1 and SAR2,



Table 1: ISNR values, and the number of iterations obtained
by the proposed algorithms compared with other methods.

BSNR = 20dB BSNR = 30dB BSNR = 40dB
Method ISNR (dB) iterations ISNR (dB) iterations ISNR (dB) iterations

TV1 1.58 26 1.9 20 1.99 9
TV2 -7.16 17 1.55 18 1.95 7

SAR1 0.88 22 1.44 8 1.29 9
SAR2 -8.36 15 -0.16 19 1.13 8

TV1-NB 2.61 30 3.72 17 4.47 20
TV2-NB 2.61 30 3.71 17 4.45 23

Table 2: Experimental results with different confidence pa-
rameters using α

o
im = 0.06, α

o
bl = 5×106, β

o
= 1/16 for the

BSNR = 40dB case.

TV1
γαim γαbl γβ E[αim] E[αbl] E[β ] ISNR (dB)
0.0 0.0 0.0 0.09 3.2×1010 1/21.48 1.99
1.0 0.8 0.0 0.06 3.9×109 1/21.44 2.11
1.0 0.8 1.0 0.06 3.5×109 1/16 2.62

TV2
γαim γαbl γβ E[αim] E[αbl] E[β ] ISNR (dB)
0.0 0.0 0.0 0.06 3.9×109 1/26.1 1.95
1.0 0.8 0.0 0.06 4.9×109 1/16.73 2.13
1.0 0.8 1.0 0.06 4.4×109 1/16 2.65

(a) (b)

(c) (d)
Figure 1: (a) Degraded Lena image (BSNR=40dB), (b) Re-
stored image using SAR1 (ISNR = 1.29dB), (c) Restored im-
age using TV1 (ISNR = 1.99dB), (d) Restored image using
TV2 (ISNR = 1.95dB).

and the blur is better removed as shown in Fig. (1), although
the reconstructed images have more ringing artifacts.

We examine the effect of prior information on the perfor-
mance of the proposed algorithms in the second set of exper-

iments. The results with different confidence parameters are
summarized in Table 2 for the BSNR = 40dB case. As the re-
sults indicate, if some information on the hyperparameters is
available, biasing the algorithm towards these hyperparame-
ters leads to improved ISNR values.

5. CONCLUSIONS

A novel total variation based blind deconvolution methodol-
ogy has been proposed which simultaneously estimates the
reconstructed image, the blur, and the hyperparameters of
the Bayesian formulation. We have adopted a variational ap-
proach to approximate the posterior distributions of the un-
known parameters, so that the uncertainty of the estimates
can be evaluated and different values from these distributions
can be used in the restoration process. Two algorithms are
provided resulting from this approach. We have shown that
the unknown parameters of the Bayesian formulation can be
calculated automatically using only the observation or with
different confidence values to improve the performance of
the algorithms. Experimental results demonstrated the im-
proved performance of the proposed algorithms.
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