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Abstract

In this paper, we propose a compression algorithm focused on the peculiarities of
hyperspectral images. The spectral redundancy in hyperspectral images is exploited
by using a context matching method driven by the correlation between adjacent bands
of hyperspectral spectral images. The method compares favorably with recent pro-
posed lossless compression algorithms in terms of compression, with significantly
lower complexity.

1 Introduction

Concerned with the effects of global climate change NASA initiated the Mission to Planet
Earth enterprise in 1991. Many of the efforts of NASA and other national space agencies
are coming to fruition. Among these efforts has been the development of remote sensing
instruments with high levels of spatial and spectral resolutions. The products generated
by these sensors promise to revolutionize our understanding of climatology, meteorology,
and land management. As the amount of data generated by these sensors is enormous and
as the number of sensors continues to grow it is clear that the role of data compression
will be crucial in this development. At different points in the path from the sensor to the
end-user the compression needs will be different and both lossy and lossless compression
approaches will be needed. Our focus in this paper is on lossless compression.

Lossy compression schemes have been an enabling technology for the multimedia rev-
olution of the past decades. These techniques have been successful in part because the hu-
man visual system is insensitive to certain kinds and levels of distortion. Thus selective loss
of information can be used to significantly enhance the compression performance. How-
ever, hyperspectral images are not solely intended to be viewed by human beings. They
are usually processed for various applications such as feature extraction, classification, tar-
get detection, and object identification. Any distortion inroduced during the compression
process can get amplified by the processing and have a significant deleterious effect on the
application. As such, lossy compression is not always acceptable. At a minimum lossless
compression is needed if the data is to be stored for some period of time on the acquisition
platform and for transmission from the acquisition platform to the ground station. Lossless
compression is also needed for data archiving.

Compression schemes, and in particular lossless compression schemes rely on statis-
tical structure in the data. In hyperspectral images there are, loosely speaking, two kinds
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of correlations that can be exploited. One is spatial correlation between adjacent pixels in
a spectral band, and the other is correlation between pixels in adjacent bands. The spatial
correlation can be easily exploited using compression method developed for standard gray-
scale or color images. However, how to efficiently make use of the redundancy between
adjacent bands for high resolution hyperspectral images is still an open question, and will
largely determine how much further compression gain can be obtained.

Most compression techniques proposed for lossless hyperspectral image compression
fall into two categories: vector quantization and predictive coding. An early example of
the use of vector quantization for lossless compression of multi-spectral images is the
mean-removed vector quantization algorithm described in [7]. A more recent algorithm,
with substantially better performance, is the locally optimal partitioned vector quantization
(LPVQ) algorithm [13] In this algorithm hyperspectral images are compressed by applying
partitioned VQ to the spectral signatures. The predictive coding techniques proposed for
hyperspectral image compression generate a prediction of the pixel being encoded by using
spatial predictor, a spectral predictor, or a hybrid predictor, followed by an entropy coder
for the residual images. Examples of these techniques can be found in CCSDS recommen-
dations for lossless data compression [1, 2], and in [5], [4], [15], [10], [9], and [14]. The
order in which bands are used for prediction turns out to be important and a techniques to
obtain an optimum band orders for prediction is developed in [3].

In [5], an adaptive differential pulse coded modulation (ADPCM) is presented in which
spatial, spectral, as well as hybrid predictors, are used to capture the local structure, and
an optimum linear predictor in the minimum mean square error sense (MMSE) is obtained
by using a standard linear combination. If the data was stationary, prediction based on a
global model would be optimum. Unfortunately, a stationarity assumption is generally not
valid for image data. As a consequence, no single model can capture all local structure in
images. Therefore, most modern lossless image compression algorithms employ multiple
predictors to capture the local relationships in different parts of an image, or explore the
underlying data structure in a progressive manner. In [10] a 3-dimensional context based
adaptive lossless image coder (Interband CALIC) is developed. It is an extended version
of the well known 2-dimensional CALIC and works between two modes: intra-band and
inter-band. The algorithm switches between the two based on the strength of the correlation
between two adjacent bands.

In the work we present a compression scheme which also uses multiple predictors.
However the predictors are generated using local statistics and are used based on a switch-
ing algorithm which relies on the correlation between bands.

This paper is organized as follows. The algorithm which we call correlation-based
conditional average prediction is presented in Section 2. The results are given in Section 3,
while in Section 4 we summarize the compression scheme.

2 Proposed Algorithm

The algorithm works in two modes. One is called JPEG-7 prediction and uses the fact
that different bands of a hyperspectral image are imaging the same physical location albeit
from different spectral viewpoints. The second mode uses a correlation-based conditional
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average prediction. We discuss these two modes in Section 2.1 and Section 2.2 respectively.

2.1 JPEG-7 Prediction

Here we present a very simple lossless compression scheme which takes advantage of the
similarity of local structure of spectral bands. The original JPEG standard had a little
known section on lossless compression. This lossless compression standard provided eight
different predictive schemes from which users could select. The first scheme makes no
prediction. The next seven are listed below. Three of the seven are 1-D predictors, and
others are 2-D prediction schemes. Here x�i� j� is the �i� j�th pixel of the original image
and x̂�i� j� is predicted value for the �i� j�th pixel.

1 x̂�i� j� � x�i�1� j� (1)

2 x̂�i� j� � x�i� j�1� (2)

3 x̂�i� j� � x�i�1� j�1� (3)

4 x̂�i� j� � x�i� j�1�� x�i�1� j�� x�i�1� j�1� (4)

5 x̂�i� j� � x�i� j�1���x�i�1� j�� x�i�1� j�1���2 (5)

6 x̂�i� j� � x�i�1� j���x�i� j�1�� x�i�1� j�1���2 (6)

7 x̂�i� j� � �x�i� j�1�� x�i�1� j���2 (7)

Different images can have different structures that can be best exploited by one of the
eight modes of prediction. If the compression is performed in offline mode, all eight pre-
dictors can be tried and the one that gives the best compression can be used. The mode
information is stored as header information in the compressed file for the decoding pur-
pose.

The JPEG-7 predictors can be extended to 3-D hyperspectral image compression. Al-
though strong correlation exists between adjacent bands this does not mean that pixel values
in the two bands are similar. This means that we cannot always use the pixels in one band
to predict the pixel value in the neighboring band in a linear fashion. However, because the
structures imaged in both bands is the same, the relationship between a pixel and its sur-
roundings in one band will likely be similar to the relationship of a co-located pixel with its
surroundings in the neighboring band. Therefore, rather than use the pixels in the reference
band to estimate the pixel in the current band, we use the pixels in the reference band to
select an appropriate predictor among the seven JPEG predictors for use in the prediction
of the corresponding pixel in the current band. The seven predictors are used in the refer-
ence band to obtain a prediction for the pixel co-located with the pixel being encoded. The
predictor that minimizes the prediction error in the reference band is selected for use in the
current band. This leads to a simple and efficient predictive coding scheme. Our results
show that this prediction schemes works very well for images with low dynamic range. For
instance, the average band entropy for cuprite89 can be as low as to 4.6bits/pixel, which
corresponds to a compression ratio of 3.5:1.
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2.2 Correlation-based Conditional Average Prediction (CCAP)

2.2.1 Conditional Expectation

The optimal estimate (in the sense of MMSE) of a random variable X given a set of obser-
vation Yi is known to be the conditional expectation of X given Yi

E�x�Yi� � ∑xP�X � x�Y1 � y1�y2� � � � �yN � (8)

Therefore, the optimal predictor of the value of a pixel is E�Xi� j��Xi�l� j�m�
i� j
�l�m���1�1��, the

conditional expected value. In practice we can assume that the pixel Xi� j is conditionally
independent of pixels that are some distance from it and hence the conditional variables
can be limited to pixels in the causal neighborhood, or causal context, of Xi� j. For jointly
Gaussian processes the conditional expectation can be expressed as a linear combination
of the observation. However, for the non-Gaussian case the computation of the conditional
expectation requires the availability of the conditional probability density function. In the
case of image pixels this is not available. Slyz and Neuhoff [11] reduce the size of the
problem by replacing the conditioning variables with their vector quantized representation.
However, vector quantization of the neighborhoods leads to an apriori ad-hoc partitioning
of the conditioning space which can result in significant loss of information.

In the area of text compression Cleary and Witten [12] developed a blending approach
for estimating the conditional probabilities in their development of the prediction-with-
partial-match (PPM) algorithm. This approach implicitly relies on the fact that the textual
information contains many exact repeats. As this situation is not duplicated in natural
images the algorithm used in PPM cannot be applied directly to the problem of generating
predictions. Fortunately, while we do not have exact repeats as in textual data our objectives
are also not the same. We are interested in an expected value which can be estimated using
a sample mean which would have no meaning in the context of text compression. We apply
the ideas behind PPM in the following manner.

Given a pixel xi� j, we can define a set of pixels which are in the causal neighborhood
of xi� j as its causal context. The exact composition of this set will vary depending on our
method of scanning (and hence the operational meaning of “causal”) and our definition of
neighborhood. For convenience, we put an ordering on these pixels so we refer to them as
xi� j

1 �xi� j
2 � � � � �xi� j

k . Given a particular set of value α � �α1�α2� � � � �αk�, define

Ck�ᾱ� � �xl�m : xl�m
1 � α1�xl�m

2 � α2� � � � �xl�m
k � αk� (9)

That is, the set Ck�ᾱ� consists of all pixels whose causal neighborhoods take on the values
α1�α2� � � � �αk. Then we can estimate E�Xi� j�x

i� j
1 � α1�xi� j

2 � α2� � � � �xi� j
k � αk� by the sample

mean

µ̂X �α �
1

�Ck�ᾱ�� ∑
x�Ck�ᾱ�

x (10)

where �� denote the cardinality.
Before we use this method in practice, we need to address several issues. We need to

decide on the size and composition of the causal context. We need to decide on how large
�Ck�ᾱ�� should be to make µ̂X �α a good estimate and we need to decide what to do when
�Ck�ᾱ�� is not a large enough for µ̂X �α to be a valid estimate.
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2.2.2 JPEG-7 Prediction Mode

We use the JPEG-7 prediction as the default prediction if the number of valid estimates is
not sufficient, i.e., for the case where �Ck�ᾱ�� is small or even zero we use the JPEG 7
prediction. As the set �Ck�ᾱ�� is built using the past history of the image, the information
about the size of the set is available to both the encoder and decoder. The decoder can per-
form exactly the same procedures as the encoder was doing. The size of �Ck�ᾱ�� required
for a valid estimate was determined empirically by conducting experiments with a test set
of images.

2.2.3 Algorithm Parameters

The question about the size and composition of the context, and the definition of context
match is somewhat more difficult. As might be expected using a large context generally
leads to a better prediction. However, when a larger context is used it is less likely to have
been encountered in the history of the image. It is reasonable to use a larger context first
and if there are not sufficient matches to this context in the history we shift to a smaller
context, similar to the way the PPM performs context match. We have found that for
hyperspectral image compression contexts of sizes greater than 4 give only marginal gains
over the smaller contexts. Therefore, for this application the context size is fixed to 4.

The definition for a context match is critical. There are two methods available. Given a
sequence of pixels Y � yi� j

1 �yi� j
2 � � � � �yi� j

k , which take on the set of values β � β1�β2� � � � �βk,
we declared a pixel yl�m to be a member of Ck�ᾱ� if:

� �αi�βi� � T1, i � 1�2� � � � �k;

or

� ℘� T2.

where ℘ is the correlation coefficient between β and α, i � 1�2� � � � �k and T1 and T2 are two
empirically determined thresholds.

Note that neither of these matches partition the space of conditioning contexts into
disjoint sets as would be the case if we used a vector quantizer to reduce the number of
contest. Ideally, the context match based on the first definition should give a good match
performance if the data is stationary. And our experiments show that this approach does
work better than JPEG-7 prediction and most other prediction methods for general purpose
image compression. However, when applied to hyperspectral images, context matches
based on the second definition provide for significantly better performance. This can be
explained by noticing that although the correlation can be very strong between two bands,
the difference between corresponding pixels values are not small. As a consequence, the
context match according to the first criteria is not as good as what we have expected from
2-D context match. As such, we use the second definition to perform the context match.

Next, a context search area needs to be specified. It is usually beneficial if we search
a particular context within a windowed search area from its adjacent bands, as shown in
Fig. 1. Alternatively, we can use the pixel in the same spatial location in reference bands
to perform the context match, rather than use a search window which contains more pixels.
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Figure 1: Context Search Window
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Figure 2: Pixel Naming for Correlation-based Context Match

This should work as each individual pixel location represents the same material on the earth
and they should have strong correlation. Due to nonidealities in the sensors, however, the
same pixel location in various bands may not represent the identical location in the earth.
Indeed, our experiments show that the most correlated pixels in reference bands are not
always in exactly the same location as the pixel to be predicted. As a result, it is reasonable
to use a search window instead of a single pixel.

If such a match is found, what we need to do is to obtain the prediction. Because of
the widely varying dynamic ranges in different bands of the hyperspectral images we have
found that linear prediction does not work well. Instead, we generate a prediction by using
a scaled neighboring pixel as follows:

ŷ �

� x
x1

y1� if x1 �� 0
y1 otherwise

(11)

Therefore, for each pixel to be predicted, the algorithm searches the adjacent previous
bands and calculates the correlation coefficient for each pixel within the window. If the
correlation coefficient is greater than a threshold, we then use Equation.11 to obtain a
prediction value.

Considering the nonstationary property of hyperspectral images, only one prediction
value is not sufficient. As such, we extend the search area and find more than one such
context matches and their predictions, and take the average of those prediction values as
the prediction value, as described by Equation 10.

To find the value of Ck�ᾱ� for which the estimate µ̂X �α is valid we ran a series of ex-
periments by varying the correlation coefficient threshold T2 for a valid context match, the
number of bands and the window size to be searched. Experiments show that the best per-
formance in terms of average residual entropy is obtained if we take 5 bands, constrain the
search window to 3�3 pixels, and set the value of T2 to 0.95.
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Prediction band Image
Cuprite Jasper Low Alt. Moffett Lunar

Previous Best JPEG-7 4.64 6.8 7.7 7.5 7.4
CCAP 5 4.53 6.26 5.69 6.22 4.64

4 4.55 6.41 5.71 6.51 4.66
3 4.76 7.70 5.93 6.83 5.28
2 4.90 7.89 6.23 7.13 5.63

Table 1: Average Band Entropy Obtained From JPEG-7 Prediction and CCAP

JPEG-LS JPEG2000 LPVQ SLSQ-Opt CCAP
Cuprite 2.09 1.91 3.18 3.24 3.53
Jasper 2.00 1.80 2.88 3.15 2.56

Low Alt. 2.14 1.96 2.94 3.04 2.81
Moffett 1.91 1.78 3.00 3.21 2.57
Lunar 1.99 1.82 3.28 3.14 3.21

Table 2: Comparison in terms of compression ratios with other schemes

3 Results

The average band entropy of various residual images by using JPEG-7 prediction and
correlation-based conditional average prediction to AVIRIS images shown in Table 1. As
we can see, the entropy difference between both methods for the image of cuprite97 is
marginal. However, for other images, we can see that the performance of CCAP is much
better than that of JPEG-7 prediction. If we examine the cuprite89 image, we find that the
intensity variation between adjacent bands is very small, and the dynamic range of pixels
is much narrower compared to other images. For all these images, most correlation coeffi-
cients between neighboring bands are close to 1. However, cuprite97 has a small gain factor
and offset between adjacent bands and JPEG-7 prediction work much more efficiently in
this situation. The reflectance property is solely determined by the materials in the earth
that were sensed, and the situation where the dynamic ranges are very large is common for
hyperspectral images. The CCAP approach is able to capture such spectral structures much
better than JPEG-7 prediction.

The residual images can be encoded by any entropy coder, such as an arithmetic coder.
Similar to CALIC, the residual entropy can be further reduced by bias cancellation as well
as band reordering process. As compared with general entropy coder, the final compression
ratio can be improved by using a context-based arithmetic coder.

Finally, we compare the proposed approach to other schemes in the literature in Table
2. The data for these were obtained from [15]. Clearly, the proposed approach outper-
forms both JPEG-LS and JPEG2000. This is not surprising as these are general purpose
image compression algorithms. We bring up this point just to point out the importance
of developing application specific compression techniques. The comparison with tech-
niques developed for hyperspectral compression presents a more mixed picture. While the
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proposed technique outperforms both LPVQ and the optimized SLSQ algorithms for the
Cuprite image, it substantially under performs both of them for Jasper and Moffett while
being competitive for Lunar.

4 Summary

Here is the summary of how the algorithm performs prediction.

1. JPEG-LS prediction is used for the first band.

2. In the following bands, search for context matches in the previous bands and calculate
the correlation coefficient for each pixel in the search window.

3. Determine whether JPEG-7 prediction or CCAP is to be used based on the correlation
coefficient, and the number of valid predictions.

4. If JPEG-7 prediction is used, the best predictor based on previous band is used for
the prediction of the current pixel.

5. Otherwise, the CCAP is used for prediction.

6. Entropy of the residual images can be further reduced by exploiting bias cancellation.

7. The final residual images can then be encoded by using a context-based entropy
coder.
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