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ABSTRACT

In this paper we propose novel algorithms for image restoration and
parameter estimation with a Generalized Gaussian Markov Random
Field prior utilizing variational distribution approximations. The re-
stored image and the unknown hyperparameters for both the image
prior and the image degradation noise are simultaneously estimated
within a hierarchical Bayesian framework. We develop two algo-
rithms resulting from this formulation which provide approxima-
tions to the posterior distributions of the latent variables. Experi-
mental results are provided to demonstrate the performance of the
algorithms.

Index Terms— Image restoration, Generalized Gaussian Markov
Random Fields , variational methods, parameter estimation, Bayesian
methods.

1. INTRODUCTION

A standard formulation of the image degradation model is given in
matrix-vector form by

y = Hx + n, (1)

where the N × 1 vectors x, y, and n represent respectively the orig-
inal image, the available noisy and blurred image, and the noise, all
ordered lexicographically. The noise is assumed Gaussian with in-
dependent elements of variance σ2

n = β−1, and H represents the
known blurring matrix.

The image restoration problem is to find an estimate of x given
y, H, and knowledge about n and possibly x [1]. In a Bayesian for-
mulation, knowledge about the unknown parameters are introduced
in the estimation process by incorporating prior image and observa-
tion models. Examples of such prior models include Simultaneous
Autoregression (SAR), Conditional Autoregression (CAR), or Total
Variation (TV). In this paper we propose to use a Generalized Gaus-
sian Random Markov Fields (GGMRF) [2][3] as the image prior. In
addition to the unknown image and noise, their prior models intro-
duce parameters that are related to their variances. These parame-
ters, denoted as hyperparameters, determine the performance of the
restoration algorithm significantly and therefore play an important
role in Bayesian image restoration.

Recently, there has been a growing interest in variational meth-
ods, where the posterior distribution is approximated with the use
of the Kullback-Leibler cross-entropy [4]. Several methods tackle
the deconvolution problem using the variational approach (see, for
example, [5][6][7][8]).

Using the variational framework we utilize a hierarchical Bayesian
paradigm (see, for example, [7][9]) to jointly provide estimates of

the posterior distributions of the restored image and the hyperpa-
rameters when a GGMRF prior is used. We develop two algorithms
using our framework.

This paper is organized as follows. The hierarchical Bayesian
model is presented in Sec. 2. Section 3 describes the variational
approach to distribution approximation and the derivation of our al-
gorithms. We present the experimental results in Sec. 4 and conclude
in Sec. 5.

2. BAYESIAN MODELING

The Bayesian modeling of the GGMRF restoration problem requires
first the definition of a joint distribution p(α, β,x,y) of the obser-
vation, y, the unknown image, x, and the hyperparameters α and
β. We utilize the hierarchical Bayesian paradigm where in the first
stage we form prior distributions p(y|x, β) and p(x|α) for the un-
knowns, and in the second stage we define hyperpriors on the hyper-
parameters. The joint probability model is shown in graphical form
in Fig. 1(a) using a directed acyclic graph.

2.1. First stage: prior models on image and observation

The probability distribution corresponding to the observation model
in Eq. (1) is given by

p(y|x, β) ∝ βN/2 exp

[
−β

2
‖ y −Hx ‖2

]
(2)

As the image model we use the GGMRF prior, given by

p(x|α) ∝ 1

ZGG(α)
exp [−αGG(x)] , (3)

where ZGG(α) is the partition function and

GG(x) =
∑

i

4∑
d=1

[
|∆d

i (x)|p
]
,

where the first summation is over all pixels i and ∆d
i (x) denotes the

first order difference in the d direction, such that

∆d
i (x) = xi − xi:+d, d = 1, . . . , 4

Figure 1(b) shows the directions d = 1, . . . , 4 along which the first
order differences are taken. In this work we are considering the case
where p ∈ [1, 2].

Using up = v and taking into account that

∫ ∞
0

exp [−αup] du =
1

p

∫ ∞
0

exp [−αv] v
1−p

p dv ∝ α
− 1

p ,
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Fig. 1. (a) Graphical model showing relationships between vari-
ables, (b) the directions for the first order differences around the
pixel i.

we use the approximation α−N/p to the partition function to obtain

p(x|α) ∝ αN/p exp [−αGG(x)] . (4)

2.2. Second stage: hyperprior on the hyperparameters

We use gamma distributions as our model for the hyperparameters
ω ∈ {α, β}, given by

p(ω) = Γ(ω|ao
ω, bo

ω) =
(bo

ω)ao
ω

Γ(ao
ω)

ωao
ω−1 exp [−ωbo

ω] . (5)

Combining the first and second stage, the joint distribution can
be written as

p(α, β,x,y) = p(α)p(β)p(x|α)p(y|x, β). (6)

3. INFERENCE AND VARIATIONAL APPROXIMATION

The Bayesian inference on (α, β,x) should be based on

p(α, β,x | y) =
p(α, β,x,y)

p(y)
. (7)

However, since the posterior p(α, β,x | y) cannot be found
in closed form, we approximate it by a simpler parametric form
q(α, β,x) = q(α, β)q(x). This distribution can be found in a vari-
ational framework by minimizing the Kullback-Leibner (KL) dis-
tance, that is,

CKL(q(α, β)q(x) ‖ p(α, β,x|y)

=

∫
α

∫
β

∫
x

q(α, β)q(x) log

(
q(α, β)q(x)

p(α, β,x|y)

)
dαdβdx

=

∫
α

∫
β

∫
x

q(α, β)q(x) log

(
q(α, β)q(x)

p(α, β,x,y)

)
dαdβdx + const,

(8)

which is always non negative and equal to zero only when q(α, β)q(x) =
p(α, β,x|y).

Due to the form of our image prior, the KL distance cannot be
minimized directly. We define the functional M(α,x,v) for α, x
and v ∈ (R4+)N , with components (vi,1, , vi,4), i = 1, , N

M(α,x,v) = αN/p exp

[
−αp

2

∑
i

4∑
d=1

[
(∆d

i (x))2 + 2−p
p

vi,d

v
1−p/2
i,d

]]
.

Next, using the following inequality for w ≥ 0, z > 0, and
p ∈ [1, 2]

wp/2 ≤ zp/2 +
p

2z1−p/2
(w − z) =

p

2

(w + 2−p
p

z)

z1−p/2
, (9)

we find a lower bound for the image prior, given by

p(x|α) ≥ c · M(α,x,v),

where c is a constant. This inequality can be used to find a lower
bound for the joint probability distribution

p(α, β,x,y) ≥ c · p(α)p(β)M(α,x,v)p(y|x, β)

= F(α, β,x,v,y). (10)

Using these lower bounds in Eq. (8), we can find an upper bound for
the KL distance as follows:

CKL(q(α, β)q(x) ‖ p(α, β,x|y)

≤ min
v

∫
α

∫
β

∫
x

q(α, β)q(x) log

(
q(α, β)q(x)

F(α, β,x,v,y)

)
dαdβdx.

(11)

Finally, we employ a minimization of the right-hand side of
Eq. (11) and obtain the following iterative procedure to estimate the
unknowns:

Algorithm 1 Posterior parameter and image distributions estima-
tion by approximating p(α, β,x | y) by q(α, β)q(x).
Given v1 ∈ (R4+)N and q1(α, β),
For k = 1, 2, . . . until convergence:

1. Find

qk(x) = arg min
q(x)

∫
x

∫
α

∫
β

qk(α, β)q(x)

× log

(
qk(α, β)q(x)

F(α, β,x,vk,y)

)
dαdβdx (12)

2. Find

vk+1 = arg min
v

∫
α

∫
β

∫
x

qk(α, β)qk(x)

log

(
qk(α, β)qk(x)

F(α, β,x,v,y)

)
dαdβdx (13)

3. Find

qk+1(α, β) = arg min
q(α,β)

∫
α

∫
β

∫
x

q(α, β)qk(x)

log

(
q(α, β)qk(x)

F(α, β,x,vk+1,y)

)
dαdβdx (14)



Now we proceed to give the explicit solutions at each step of the
algorithm. Note that in the first step we have

qk(x) ∝ exp
{

Eqk(α,β)[ln F(α, β,x,vk)]
}

, (15)

which corresponds to a multivariate Gaussian distribution with the
mean and the covariance given by

Eqk(x)[x] = covqk(x)[x]Eqk(β)[β]Hty, (16)

covqk(x)[x]

=
(
Eqk(β)[β]HtH + pEqk(α)[α]

4∑
d=1

(∆d)
t
Wd(vk)(∆d)

)−1

= [Ck(vk)]−1, (17)

where

Wd(vk) = diag

(
1

v
1−p/2
i,d

)
, d = 1, . . . , 4, i = 1, . . . , N,

In the second step, we have

vk+1
d = arg min

vd

∑
i

Eqk(x)[(∆
d
i (x))2] + 2−p

p
vi,d

v
1−p/2
i,d

d = 1, . . . , 4

and therefore

vk+1
i,d = Eqk(x)[(∆

d
i (x))2], i = 1, . . . , N d = 1, . . . , 4 (18)

where

Eqk(x)[(∆
d
i (x))2] = (∆d

i (Eqk(x)[x]))2

+
1

N
trace

[
covqk(x)[x]×

(
(∆d)

t
(∆d)

)]
.

Finally to find qk+1(α, β) we differentiate the integral on the
right hand side of Eq. (14) with respect to q(α, β) and set it equal to
zero to obtain

qk+1(α, β) ∝ exp
{

Eqk(x))[ln F(α, β,x,vk+1)]
}

Therefore, qk+1(α) and qk+1(β) are both Gamma distributions, given
by

qk+1(α) ∝ αN/p+ao
α−1 exp

[
−α

(∑
i

4∑
d=1

([vk+1
i,d ]p/2) + bo

α

)]
,

qk+1(β) ∝ βN/2+ao
β−1 exp

[
−β

(
Eqk(x) ‖ y −Hx ‖2

2
+ bo

β

)]
.

As the estimates to these hyperparameters, we use the means of
these distributions, which can be given as

(Eqk+1(α)[α])−1 = γα
1

αo +(1−γα)
p
∑4

d=1

∑
i[v

k+1
i,d ]p/2

N
, (19)

(Eqk+1(β)[β])−1 = γβ
1

β
o + (1− γβ)

Eqk(x)

[
‖ y −Hx ‖2

]
N

,

(20)

where αo = ao
α/bo

α, β
o

= ao
β/bo

β , γα =
ao

α

ao
α+ N

p

, and γβ =
ao

β

ao
β
+ N

2
.

The parameters γα and γβ , both taking values in the interval [0, 1),
can be understood as normalized confidence parameters. According
to Eqs. (19) and (20), when they are equal to zero, no confidence is
placed on the inverse of the mean of the corresponding hyperprior,
while when they are asymptotically equal to one, the prior knowl-
edge of the mean is fully enforced, i.e., no estimation of the hyper-
parameters is performed.

The only remaining task is the calculation of Eqk(x)

[
‖ y −Hx ‖2

]
which can be given as

Eqk(x)

[
‖ y −Hx ‖2] = ‖ y −HEqk(x)[x] ‖2

+ trace
(

covqk(x)[x]HtH
)

.

The estimate qk(x) in Algorithm 1 is the best approximation to
the posterior in KL divergence sense. However, we can also con-
sider a suboptimal case where we assume a degenerate distribution
for q(x), that is, q(x) takes one value, xk, with probability one and
the rest of the values with probability zero. This approach leads
to an alternative algorithm, denoted by Algorithm 2, where the ex-
pectations involving the parameter qk(x) are removed. Thus, the
covariances in Eqs. (18), (19) and (20) are set equal to zero.

As the estimate to the unknown image x, we use the mean of
qk(x) shown in Eq. (16) in both algorithms, which requires the in-
version of a very large matrix Ck(vk). This, however, introduces
a big computational challenge since the last terms in Eq. (17) can-
not be represented as block-circulant matrices with circulant blocks
(BCCB), and therefore the inverse cannot be computed in Fourier do-
main. We therefore employ a gradient descent approach to compute
the image estimates without explicitly calculating the image covari-
ance.

Note, however, that the explicit form of covqk(x)[x] is needed
in Eqs. (19)-(20) in Algorithm 1. To overcome this computational
difficulty, we use the following approximation

covqk(x)[x]

≈
(
Eqk(β)[β]HtH + pEqk(α)[α]

4∑
d=1

zd(vk)(∆d)
t
(∆d)

)−1

= B−1.

where Wd(vk) ≈ zd(vk)I and zd(vk) = 1
N

∑
i

1

[vk
i,d

]1−p/2 . Note

that in this approximation, the matrix B is BCCB, and therefore its
inversion can be carried out very efficiently in Fourier domain.

4. EXPERIMENTAL RESULTS
We performed a number of experiments with the proposed algo-
rithms using several images and several types of blurring functions.
The results of some of them are presented here. Since we devel-
oped two different algorithms resulting from our framework, we will
present results for both of them.

For the experiments presented here, the “Lena” image (shown in
Fig. 2(a)) is blurred with a Gaussian shaped blur with variance 9 and
a 9x9 uniform blur. Gaussian noise is added to the blurred images to
obtain degraded images with blurred-signal-to-noise (BSNR) ratios
of 20 and 40dB. An example degraded image is shown in Fig. 2(b)
where the blur is Gaussian-shaped with variance 9 and BSNR =
40dB.

The parameters of both algorithms are initialized as follows:
The observed image is used as initial estimation for the unknown



(a) (b)

(c) (d)
Fig. 2. (a) Original Lena Image, (b) Image degraded by a Gaussian
shaped PSF with variance 9 and Gaussian noise of variance 0.16
(BSNR=40dB), (c) Restored image using Algorithm 1 with p = 1.8
(ISNR = 4.15dB), (c) Restored image using Algorithm 2 with p =
1.6 (ISNR = 3.78dB).

image x. The initial values of the hyperparameters and v are ini-
tialized using this initial x and Eqs. (18)-(20). Note that all pa-
rameters of the algorithms are initialized using the observation y
so that no manual input is needed, i.e., both algorithms are ini-
tialized and run automatically. For all experiments, the criterion
‖ xk − xk−1 ‖2 / ‖ xk−1 ‖2< 10−4 is used to terminate the
iterative procedure.

The restoration results of the Lena image in the case of Gaussian
blur with 40dB BSNR are shown in Fig. 2(c) for Algorithm 1 and
2(d) for Algorithm 2. Note that Algorithm 1 is more successful at re-
moving the blur whereas the restored image has less ringing artifacts
in Algorithm 2. In both cases the restoration quality is good con-
sidering that the parameters of both algorithms are estimated using
only the degraded observation without any prior knowledge about
the noise.

Figure (3) shows ISNR evolution in the case of Gaussian and
uniform blurs with Algorithm 1 and BSNR = 40dB and 20dB with
varying p-values, where ISNR is defined as 10 log10(‖ x− y ‖2 /
‖ x − x̂ ‖2), where x̂ is the estimated image. As can be seen from
Fig. (3), the highest ISNR values are achieved with different p-values
for different noise levels and blur functions.

5. CONCLUSIONS
A novel GGMRF based image restoration methodology has been
proposed to simultaneously estimate the reconstructed image and
the hyperparameters of the Bayesian formulation. We have adopted
a variational approach to approximate the posterior distributions of
the unknown parameters to estimate the posterior distributions of un-
knowns so that the uncertainty of the estimates can be evaluated and
different values from these distributions can be used in the restora-
tion process. Two algorithms are provided resulting from this ap-
proach. We have shown that the unknown parameters of the Bayesian
formulation can be calculated automatically using only the observa-
tion or initial knowledge can be incorporated with different confi-

(a)

(b)
Fig. 3. ISNR values obtained by different p values with Lena im-
age degraded by (a) a Gaussian blur with variance 9 and (b) a 9x9
uniform blur with Gaussian noise (BSNR = 40dB and 20dB).

dence value. Experimental results demonstrated the performance of
the proposed algorithms.
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