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Abstract—In this paper, a new algorithm for lossless compres-
sion of hyperspectral images is proposed. The spectral redundancy
in hyperspectral images is exploited using a context-match method
driven by the correlation between adjacent bands. This method is
suitable for hyperspectral images in the band-sequential format.
Moreover, this method compares favorably with the recent pro-
posed lossless compression algorithms in terms of compression,
with a lower complexity.

Index Terms—Conditional average, context coding, correlation,
entropy code, Golomb–Rice code, hyperspectral image, image
coding.

I. INTRODUCTION

CONCERNED with the effects of global climate change,
the National Aeronautics and Space Administration

(NASA) initiated the Mission to Planet Earth Enterprise in
1991. Many efforts of NASA and other national space agencies
are coming to fruition. Among these efforts has been the
development of remote-sensing instruments with high levels
of spatial and spectral resolutions. The products generated
by these sensors promise to revolutionize our understanding
of climatology, meteorology, and land management. As the
amount of data generated by these sensors is enormous and
the number of sensors continues to grow, it is clear that the
role of data compression will be crucial in this development.
At different points in the path from the sensor to the end-user,
the compression needs are different, and both lossy and lossless
compression approaches are needed.

Lossy compression has been an enabling technology for the
multimedia revolution of the past decades, in part because the
human visual and hearing system are insensitive to certain kinds
and levels of distortion. Thus, selective loss of information can
be used to significantly enhance the compression performance.
However, hyperspectral images are not solely intended to be
viewed by human beings. They are usually processed for vari-
ous applications such as automatic feature extraction, classifica-
tion, target detection, and object identification. Distortion from
lossy compression might be amplified during the processing
and, therefore, have a significant deleterious effect. As such,
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lossy compression is not always desirable. At a minimum, loss-
less compression is needed if the data are to be stored for some
period of time on the acquisition platform and for transmission
from the acquisition platform to the ground station. Lossless
compression is also needed for data archiving. Our focus in this
paper is on lossless compression.

Compression relies on statistical structure in the data. In
hyperspectral images, there are basically two types of corre-
lation available. One is spatial correlation in adjacent pixels in
the same band, and the other is spectral correlation in pixels
between adjacent bands. The spatial correlation can be easily
exploited using general compression techniques developed for
gray-scale images. However, the solution of how to efficiently
explore the redundancy between adjacent bands for high-
resolution hyperspectral images is not yet well established.

Most lossless hyperspectral-image compression techniques
can be classified as vector quantization (VQ) techniques, pre-
dictive coding techniques, or transform coding techniques.
Ryan and Arnold [1] discuss various VQ techniques and pro-
pose a mean-normalized VQ (M-NVQ). In [2], Pickering and
Ryan use a discrete cosine transform in both the spatial and
spectral domains to exploit the redundancy in the M-NVQ out-
put. In [3], Motta et al. partition the input vectors into a number
of consecutive subsegments and use a variation of the general-
ized Lloyd algorithm to train vector quantizers for these subseg-
ments. The subsegments are then quantized independently, and
the quantization residual is entropy coded to achieve lossless
compression. This method is further optimized in [4] by mini-
mizing the distortion caused by local partition boundaries. The
optimized method is called LPVQ. VQ-based approaches usu-
ally require offline codebook training and online quantization-
index searching. This makes them computationally expensive
and not always well suited for real-time applications.

Predictive coding approaches usually employ spatial, spec-
tral, and hybrid predictors to decorrelate the image, followed
by entropy coders [5]–[13]. In [7], Roger and Cavenor use
an optimum linear predictor [in the minimum mean-square
error (mmse) sense] and entropy code the residual. In [8],
Aiazzi et al. use fuzzy clustering and fuzzy prediction to
select a number of predictors for data decorrelation in both
the spatial and spectral domains, followed by a context-based
arithmetic coder. In [9], Wu and Memon extend the CALIC
algorithm [19] from 2-D to 3-D. The algorithm switches be-
tween two modes, intraband and interband prediction, based on
the correlation coefficient. The resulting residual is then coded
using context-based arithmetic codes. In [10], Magli et al.
propose a modified 3-D CALIC (M-CALIC) for lossless
and near-lossless compression. Rather than switching between
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interband and intraband modes, as in 3-D CALIC, M-CALIC
works with a full interband and a universal spectral predictor.
It refines the prediction models and optimizes parameters of
context coding to achieve a good coding performance. In [11],
Rizzo et al. propose Spectral-oriented Least SQuares (SLSQ),
in which spectral correlation is exploited using linear pre-
diction, and the prediction error is then entropy coded. Slyz
and Zhang [12] propose a fast compression algorithm with
random-access capability, in which a predesigned code based
on the residual error from interband prediction is applied
and predictor coefficients and errors are encoded. In [13],
Rizzo et al. propose a low-complexity method using two pre-
dictors: one is an interband linear predictor, and the other is
an interband least square predictor. The compression ratio is
further optimized at a moderate cost of more memory and
delay. In [14], Mielikainen and Toivanen propose a clustered
differential pulse-code modulation scheme, where the spectral
bands of the image are clustered then filtered using an optimum
linear filter for each cluster. The output of the filters is encoded
using an adaptive entropy coder. In their follow-up work in
[15], which they call Look-Up Tables (LUTs), the pixel that
is nearest and equal to the pixel colocated with the one to be
predicted in the previous band is taken as the prediction. The
sign of the residual is coded first, followed by adaptive range
coding of its absolute value. Predictive coding schemes, so far,
seem to have the best compression performance, with the added
advantage that their computational cost and complexity are usu-
ally less than VQ-based methods and, therefore, promising for
onboard application. In [16], Penna et al. apply a 3-D wavelet
transform to decorrelate the image in the spectral and spatial
domains and develop a progressive coding scheme that works
from lossy to lossless coding and complies with the second
part of the JPEG 2000 Standard. Transform-based schemes can
yield excellent coding gain for lossy compression at low bit
rates while their lossless coding performance is inferior to these
specialized lossless compression schemes. In [17], Tate shows
that the band order could be rearranged and optimized for better
interband prediction, and therefore, better compression ratios
could be achieved. Recently, Zhang and Liu [18] proposed
a two-step adaptive spectral-band-reordering algorithm. First,
the bands are classified into groups based on the correlation
factor of adjacent bands, and then, a reordering algorithm based
on the Prim algorithm is applied to each group. A prediction
method called ABPCNEF is proposed to take advantage of
the similarity of structure and pixel relationship between two
neighboring spectral bands, and the residual is coded using
adaptive arithmetic coding.

We propose a lossless compression method which consists of
context-based conditional average prediction (CCAP) followed
by entropy coding. Our primary goal is to develop a fast lossless
compression algorithm suitable for real-time implementation.
The coding algorithm involves interband and intraband pre-
diction, context match, CCAP, and entropy coding. Simulation
results show that our method achieves competitive compression
ratios with low complexity and computational cost. This paper
is organized as follows. The compression method is presented
in Section II. The results are given in Section III, and in
Section IV, we conclude this paper.

Fig. 1. Cuprite scene 1 with 101st, 102nd, and 103rd bands.

Fig. 2. Low-altitude scene 1 with 101st, 102nd, and 103rd bands.

Fig. 3. Correlation coefficient between two adjacent bands of Cuprite
scene 1.

II. PROPOSED ALGORITHM

A. Correlation Coefficient and Intraband Prediction

A salient property of hyperspectral images is that strong
spectral correlation exists throughout almost all bands. This
is shown in Figs. 1 and 2, which show the 101st, 102nd, and
103rd bands of the Cuprite scene 1 and low-altitude scene 1,
respectively. Given two blocks, A and B, which are spatially
located in the same place in two neighboring bands, their spec-
tral correlation can be described by the correlation coefficient
defined as follows:

ρ(A, B) =
∑m

i=1

[
(ai − ā)(bi − b̄)

]
√∑m

i=1(ai − ā)2
∑m

i=1(bi − b̄)2
(1)

where ai and bi denote the individual pixels in blocks A and B,
respectively, ā and b̄ represent the mean of blocks A and B,
respectively, and m is the total number of pixels in one block.
Fig. 3 shows the correlation between two consecutive bands
of Cuprite scene 1, from the first band to the 224th band.
For most bands, the correlation value ρ(A, B) is close to one,
although the dynamic range of pixels can be large and different
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Fig. 4. Flowchart of the proposed scheme.

in neighboring bands. This implies that a first-order linear
predictor using a scaling factor and an offset may work well
to model the relationship between these bands. Another fact
evident from Fig. 3 is that, in certain bands, the pixel inten-
sity decreases significantly and the correlations between these
bands are very weak. Examples of such bands are the bands
from 104th to 110th for Cuprite image 1. Other hyperspectral
images also exhibit similar behavior. This could be because,
in these bands, the signal associated with these frequencies is
greatly attenuated by the atmosphere or the materials being
imaged. Therefore, noise dominates in these bands.

We propose a two-stage compression algorithm, as shown
in Fig. 4. Note that this method is suitable for hyperspectral
images in the band-sequential format. The first stage attempts to
decorrelate the highly correlated bands so that the redundancy
is removed as much as possible. The second stage is designed
to exploit the redundancy left in the band residual from the
first stage. The first stage operates in two modes: interband
and intraband, based on ρ(A, B). If ρ(A, B) < θ, where θ is a
threshold determined from experiments, intraband prediction
using the median predictor defined in JPEG-LS [20] is used.
Otherwise, interband prediction is used. The median predic-
tor is also the default predictor for the first band. Given the
nomenclature of Fig. 5, the estimate of pixel x is given as
follows:

x̂ =




min(N,W ), if NW ≥ max(N, W)
max(N,W ), if NW ≤ min(N, W)
N + W −NW, otherwise.

(2)

In the interband mode, a band is linearly predicted using the
previous bands as reference (the interband prediction used will
be discussed in more detail in the next section). Once the
band residual is obtained from either intraband or interband
prediction, the second stage, called CCAP, is applied. CCAP
is described in Section II-C. The residual from the second stage
is then entropy coded.

Fig. 5. Pixel naming for median predictor.

B. Interband Prediction

Interband prediction operates on two colocated square blocks
of neighboring bands. Given blocks 1 and 2, with standard de-
viation of δ1 and δ2 and with mean of m1 and m2, respectively,
we normalize the pixels in block 1 by

x̄ =
x−m1

δ1
(3)

where x̄ is the normalized pixel, and x is the original pixel. If
the mean and standard deviation of block 2 are available, the
pixels in block 2 are predicted by

ŷ = x̄ ∗ δ2 + m2. (4)

The residual is then obtained by

ỹ = y − ŷ. (5)

Both δ2 and m2 are required for prediction at the encoder and
reconstruction at the decoder. They could be either sent to the
decoder as side information or predicted using the available
neighboring blocks. A large block size may reduce the overhead
due to side information, while choosing a small block size may
enable accurate prediction of the mean and standard deviation
using the neighboring blocks.

C. Context-Based Conditional Average Prediction

There is still strong redundancy in the residual image after
stage 1. The second stage, CCAP, is designed to remove the
redundancy further and decrease the first-order entropy of
the residuals. Note that CCAP works on the residual value of
the pixel from stage 1, and therefore, the “pixel” in this section
refers to the residual of the pixel obtained from stage 1. For
each residual value of a pixel, the residual values of its four
neighboring pixels compose a context for CCAP to derive a
prediction.
1) Conditional Expectation: The optimal estimate (in the

sense of mmse) of a random variable X , given a set of obser-
vation Xi, where Xi = (x1

i , x
2
i , . . . , x

N
i ), is known to be the

conditional expectation of X , given Xi

E[x|Xi] =
∑

xP
[
X = x|Xi =

(
x1

i , x
2
i , . . . , x

N
i

)]
. (6)
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For 2-D images, given a pixel xi,j and its context set Xi,j , the
optimal estimate of the pixel is its conditional expected value
E[xi,j |Xi,j ]. In practice, we can assume that the pixel xi,j

is conditionally independent of pixels that are some distance
from it, and hence, the conditioning variables can be limited
to pixels in its causal neighborhood or causal context. For
jointly Gaussian processes, the conditional expectation can be
expressed as a linear combination of the observations. However,
for the non-Gaussian case, the computation of the conditional
expectation requires the availability of the conditional probabil-
ity density function. In the case of image pixels, this is not avail-
able. Slyz and Neuhoff [21] reduced the size of the problem by
replacing the conditioning variables with their vector quantized
representation. In the area of text compression, Cleary and
Witten [22] developed a blending approach in estimating the
conditional probabilities in their development of the prediction-
with-partial-match (PPM) algorithm. This approach implicitly
relies on the fact that the textual information contains numerous
exact repeats. As this situation is not usual in natural images,
the algorithm used in PPM cannot be applied directly for image
prediction. Fortunately, while we do not have exact repeats as
in textual data, our objective is also not the same. We are more
interested in an expected value, which can be estimated using a
sample mean and which would have no meaning in the context
of text compression. We apply the idea to our problem in the
following manner.

Given a pixel xi,j , a set of pixels in its causal neigh-
borhood is defined as its causal context. The exact com-
position of this set depends on the scanning method (and,
hence, the operational meaning of “causal”) and the definition
of neighborhood. For convenience, we refer to the context
pixels as Ci,j = (x1

i,j , x
2
i,j , . . . , x

k
i,j). Given a set of value

ᾱ = (α1, α2, . . . , αk), we say Ci,j ∈ Ck(ᾱ) if xr
i,j = αr for

r = 1, 2, . . . , k, i.e., the set Ck(ᾱ) consists of all pixels whose
causal neighborhoods take on the values α1, α2, . . . , αk. Then,
we estimate E[xi,j |Ci,j = ᾱ] by taking the sample mean

µ̂X|α =
1

‖Ck(ᾱ)‖
∑

(i,j):Ci,j∈Ck(ᾱ)

xi,j (7)

where ‖Ck(ᾱ)‖ denotes the cardinality of Ck(ᾱ). Several
issues need to be addressed before this method is put into
practice. A proper size of ‖Ck(ᾱ)‖ is needed for µ̂X|α to be a
good estimate. When ‖Ck(ᾱ)‖ is not sufficiently large for µ̂X|α
to be a good estimate of xi,j , then a neighboring pixel to xi,j

is taken as its estimate. In addition, a good balance between
the computational cost and prediction accuracy is necessary
for real-time onboard compression applications that require fast
context searches.

In [23], the context match is obtained by exhaustively com-
paring the current context with the past contexts. Given the
context Ci,j for a pixel xi,j , we searched over the context
history and declared context Ci,j matches Ck(ᾱ) if∣∣αr − xr

i,j

∣∣ ≤ T, r = 1, 2, . . . , k (8)

where T is an empirically determined threshold. This method
turned out to work fine and provide good compression perfor-

mance. However, the exhaustive search and the delay caused are
somewhat prohibitive and intolerable for real-time applications.

To avoid these problems, we build a table to classify and
index each context. The pixels in each context are scalar quan-
tized, and the quantization indexes are grouped to generate a
table index. Note that the context match defined in (8) does not
partition the space of conditioning contexts into disjoint sets,
while, in this case, the context space is partitioned into disjoint
sets. The mean of the context is first removed, and we then
quantize the mean-removed context pixels, the mean, and the
absolute difference of the context using scalar quantization. For
each pixel to be coded, a table index is obtained by concate-
nating all these quantization indexes. During these operations,
only scalar comparison and a bit-shift operation are involved.
For each context index, the table records three parameters as
follows:

1) M , the total number of occurrences of the context;
2) S, the sum of pixels conditioned on this context;
3) E, the accumulated prediction error.

Having obtained the context index p for xi,j , we examine the
content of the corresponding table entry. If M is sufficiently
large, the estimate of xi,j is obtained as follows:

x̂i,j =
S − E

M
(9)

where x̂ represents the average of the past pixels conditioned
on the context that is specified by the context index. The
accumulated prediction error E is used to adjust the estimate,
i.e., for bias cancellation. If M is greater than a threshold, we
consider this estimate to be valid. Otherwise, the pixel W is
taken as the estimate of the pixel x. We find that five is a good
threshold for a valid prediction. After this prediction, we update
the table content for this context as follows:{

M ←M + 1
S ← S + x
E ← E + x̃

(10)

where x̃ is the prediction error obtained by x̃ = x− x̂.
2) Entropy Coding of the Band Residual: The band resid-

ual from the second stage is entropy encoded. Context-based
Golomb–Rice code is used for this purpose. The Golomb–Rice
code is optimum for alphabets with geometric distributions and
extremely efficient for computer implementation. It is used in
JPEG-LS to encode residuals from a median predictor, which
follows a geometric distribution. Using a Golomb–Rice code,
instead of an arithmetic code, results in considerable reduction
on computational complexity for a minimal sacrifice in the
compression ratio. As our goal is a fast and computationally
efficient compression approach, we prefer the Golomb–Rice
code to arithmetic code and use it in the way similar to
JPEG-LS. That is, for each pixel, the split-coding parameter
for Golomb–Rice code is estimated on-the-fly based on the
context of the pixel, as well as the absolute accumulated errors
in this context. In addition, a run-length mode is initiated once
consecutive pixels in a line are the same. This can result in a
big compression saving for blocks that have many zeros.



WANG et al.: LOSSLESS HYPERSPECTRAL-IMAGE COMPRESSION USING CONTEXT-BASED CONDITIONAL AVERAGE 4191

For compression, we also used an adaptive arithmetic code
(AAC) to encode the residual. An AAC does not require prior
knowledge of the symbol distribution but, instead, updates
the symbol distribution in a backward adaptive manner. We
assume the initial distribution to be geometric. Rather than use
a context-based arithmetic code, we encode each band using
the AAC separately. This reduces the cost of classifying the
contexts while preserving good compression performance.

III. SIMULATION RESULTS

The data set for the experiment are the 1997 Airborne
Visible InfraRed Imaging Spectrometer (AVIRIS)-calibrated
radiance images [24]. Each image comprises several scenes,
and for each scene, there are 224 bands. Each band consists of
512 × 614 pixels, and each pixel is a 16-bit signed integer.
The results reported for each image are the average results of
scenes. The coding of blocks follows raster order, and the block
size is 64 × 64. This choice depends on several considerations:
the cost to calculate the standard deviation and correlation
coefficient, the efficiency of larger blocks when run-length
coding is used, the memory requirement, and delay constraints.

A. Context Table

In the first stage, the switching threshold for the correla-
tion coefficient α is set to 0.9. The mean-removed context
pixels N , W , NW , NE, and mean are quantized using
a 3-bit scalar quantizer, and the decision boundaries are
{−∞,−24,−23,−22, 0, 22, 23, 24,+∞}. The sum of the ab-
solute value of the mean-removed pixels is quantized by a 2-bit
scalar quantizer with decision boundaries {0, 21, 22, 23,+∞}.
Therefore, the total number of bits required for indexing is
17. As the coding proceeds, the contexts that are far from the
current context have gradually less effect on the prediction
for the new contexts. Therefore, the weight of those remote
contexts is reduced according to the procedure in (11). For each
context index, we limit M to 64 and S and E up to 2 bytes.
When M > 64, we adjust the table content as follows:


S ← S − S

M + x

E ← E − E
M + x̃

M = 64.
(11)

When S ≥ 216, we adjust S such that S < 216 as follows:

while (S ≥ 216)
{

S ← S − S

M
E ← E − E

M
M ←M − 1

}
.

This also prevents overflow if we use two-bytes unsigned short
to record the accumulated sum. Therefore, for each table entry,
we need five bytes, and the total memory requirement for the
index table is 5× 217 = 655 kB.

B. Correlation Coefficient

Our simulation shows that considerable computation re-
source is taken by the calculation of correlation coefficient. To
lower the cost for computing the correlation coefficients, we

Fig. 6. Compression ratio of interband prediction versus compression ratio of
residuals from CCAP.

find that, if strong correlation exists, the correlation coefficient
obtained using all pixels in entire blocks is almost identical
with the one using only a small portion of the pixels in the
blocks. Because the correlation coefficient is used for prediction
only when strong correlation exists, we take only one pixel
for every four pixels or take the average of the four pixels
for this calculation. Our results indicate that this simplification
results in considerable savings in terms of the computational
cost without degrading the prediction accuracy.

C. Interband Prediction

As shown in [17], proper band reordering could enhance the
interband prediction and, therefore, improve the compression
performance. Unfortunately, the order-optimization method re-
quires that all bands be available and exhaustive comparison
be performed, which are impractical in our scenario. Thus,
we develop a simplified strategy. For a block being processed,
the colocated blocks in the previous four bands are used to
calculate the correlation coefficient and then perform interband
prediction. A block is normalized, and its correlation coefficient
with four colocated blocks needs to be calculated. We can
keep the normalized pixels in a 2-D matrix buffer to avoid
duplicating normalization.

The interband prediction requires the mean and standard
deviation of the block being predicted. Similar to pixels, the
mean and standard deviation of a block are very likely to be
highly correlated with those of the blocks that are colocated
in previous bands. Taking advantage of available blocks and
their correlation with the colocated blocks in previous bands,
the mean and standard deviation of the current block was
differentially coded (except for the first block at the top-left
corner) and provided to the decoder.

D. Compression Results

Fig. 6 shows the compression ratios from the first and the
second stages. As shown, the CCAP significantly improves
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TABLE I
COMPARISON OF COMPRESSION RATIOS WITH OTHER SCHEMES

the compression performance for most bands. However, for
noiselike bands and highly uncorrelated band residuals, it may
not achieve compression and maybe, in fact, increases the data
rate. Thus, we use CCAP only if it improves the compression
ratio and send a decision bit to indicate the selection to the
decoder.

Table I shows the compression ratios of the proposed ap-
proach, as compared with other schemes [11], [14]. We can
see that the proposed approach outperforms both JPEG-LS
and JPEG-LS differential schemes, in which JPEG-LS com-
presses the difference between two adjacent bands. This is
not surprising, as these are general-purpose image-compression
algorithms. We note this in order to emphasize the importance
of developing application-specific compression techniques. In
addition, the proposed scheme CCAP with AAC outperforms
both LPVQ and SLSQ by about 34% and 4%, respectively,
and is comparable to the optimized SLSQ and M-CALIC.
The proposed CCAP with Golomb–Rice code is comparable to
LPVQ and comparable also to others. Note that this compres-
sion performance is obtained by using the simple Golomb–Rice
code rather than the context-based arithmetic code used by
other algorithms.

E. Complexity

In order to evaluate the time complexity and compare it with
other methods, we may divide a coding procedure into two
stages, prediction and entropy coding, and consider the com-
plexity of each stage separately. The prediction stage consists
of correlation-coefficient calculation, interband prediction, and
CCAP. The calculation of the correlation coefficient is simpli-
fied by taking a small portion of the pixels of each block. Most
methods using the correlation coefficient as a switch, including
3-D CALIC and M-CALIC, do not sufficiently simplify this
operation. The interband prediction requires only one addition
and one multiplication for each pixel. For each pixel in CCAP,
seven additions are needed to remove the mean and obtain the
absolute difference, and two additions and two divisions are
needed to obtain the conditional average and bias cancellation.
Therefore, we need a total of ten additions, two divisions, and
one multiplication for each pixel in the interband-prediction
mode. This is roughly equivalent to SLSQ, which requires four
multiplications and six additions for each pixel prediction for
the interband predictor. It is lower in complexity than 3-D
CALIC and M-CALIC. However, it has a higher complexity
than the LUT technique, in which the prediction of one pixel
requires only two memory operations: a fetch operation and
store operation.

For entropy coding, the Golomb–Rice code is well known to
be considerably less complex than arithmetic coding, which is
employed in LPVQ, 3-D CALIC, M-CALIC, and SLSQ. For
LUT, the complexity of adaptive-range coding is around half
of arithmetic coding [26]. According to [10], the complexity of
arithmetic coding accounts for around 70% of the computation
time of 2-D CALIC. Approximately, 3-D CALIC doubles the
computation time of 2-D CALIC. It is reasonable to assume that
the additional costs are mainly from the interband prediction
and context modeling. By looking at these statistics, we can
assume that arithmetic coding roughly accounts for 35% of the
computation time of 3-D CALIC and M-CALIC (M-CALIC
only has around 10% complexity increase over 3-D CALIC).
However, in our method, entropy coding by Golomb–Rice
codes takes less than 10% of the total compression time.

We compared the complexity of the proposed algorithm with
JPEG-LS [25] on a personal computer with a Pentium IV,
2.8-GHz processor, and Windows XP system. The compression
time was recorded using the clock() function. We compressed
the AVIRIS image set and took the average running time as the
reference. The average time (in seconds per band) is 0.05 for
JPEG-LS and 0.31 for our method. That is, our unoptimized
code is around six times slower than JPEG-LS. We do not
have other compression methods available. However, based
on the relative compression time with JPEG-LS presented in
[10], our method is around 35% faster than 3-D CALIC and
42% faster than M-CALIC. Although the comparison might
be biased by code implementation, optimization, hard-drive
access, and memory access, it may provide some insight on
the complexity. We do not have running-time values for the
LUT method. Considering that the LUT method is inherently
simple, we expect that its complexity will be low. However, no
definitive conclusion can be drawn.

IV. CONCLUSION

We have proposed a novel prediction method based on
the context history of hyperspectral images. A context index
table is built up for context recording, fast-context search,
and context match. The approach switches between interband
and intraband modes based on the correlation coefficient. The
residual from interband prediction and intraband prediction is
further processed using the CCAP method and then coded
by Golomb–Rice coding. We apply the proposed method to
hyperspectral-image compression and obtain competitive com-
pression ratios. The advantage of the method is its low com-
plexity and computational cost, which make it promising for
onboard applications.
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